BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16362904)

  • 1. A Gibbs sampling approach to detection of tree motifs.
    Meireles LM; Akutsu T
    Genome Inform; 2005; 16(1):34-43. PubMed ID: 16362904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A global representation of the carbohydrate structures: a tool for the analysis of glycan.
    Hashimoto K; Kawano S; Goto S; Aoki-Kinoshita KF; Kawashima M; Kanehisa M
    Genome Inform; 2005; 16(1):214-22. PubMed ID: 16362924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient tree-matching methods for accurate carbohydrate database queries.
    Aoki KF; Yamaguchi A; Okuno Y; Akutsu T; Ueda N; Kanehisa M; Mamitsuka H
    Genome Inform; 2003; 14():134-43. PubMed ID: 15706528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining significant tree patterns in carbohydrate sugar chains.
    Hashimoto K; Takigawa I; Shiga M; Kanehisa M; Mamitsuka H
    Bioinformatics; 2008 Aug; 24(16):i167-73. PubMed ID: 18689820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A gram distribution kernel applied to glycan classification and motif extraction.
    Kuboyama T; Hirata K; Aoki-Kinoshita KF; Kashima H; Yasuda H
    Genome Inform; 2006; 17(2):25-34. PubMed ID: 17503376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovering sequence motifs.
    Bailey TL
    Methods Mol Biol; 2008; 452():231-51. PubMed ID: 18566768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast model-based protein homology detection without alignment.
    Hochreiter S; Heusel M; Obermayer K
    Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction of leukemia specific glycan motifs in humans by computational glycomics.
    Hizukuri Y; Yamanishi Y; Nakamura O; Yagi F; Goto S; Kanehisa M
    Carbohydr Res; 2005 Oct; 340(14):2270-8. PubMed ID: 16095580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sampling phylogenetic tree space with the generalized Gibbs sampler.
    Keith JM; Adams P; Ragan MA; Bryant D
    Mol Phylogenet Evol; 2005 Mar; 34(3):459-68. PubMed ID: 15683921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iGibbs: improving Gibbs motif sampler for proteins by sequence clustering and iterative pattern sampling.
    Kim S; Wang Z; Dalkilic M
    Proteins; 2007 Feb; 66(3):671-81. PubMed ID: 17120229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ProfilePSTMM: capturing tree-structure motifs in carbohydrate sugar chains.
    Aoki-Kinoshita KF; Ueda N; Mamitsuka H; Kanehisa M
    Bioinformatics; 2006 Jul; 22(14):e25-34. PubMed ID: 16873479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of glycan structure from tandem mass spectra.
    Böcker S; Kehr B; Rasche F
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):976-86. PubMed ID: 21173459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fair-balance paradox, star-tree paradox, and Bayesian phylogenetics.
    Yang Z
    Mol Biol Evol; 2007 Aug; 24(8):1639-55. PubMed ID: 17488737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accommodating uncertainty in a tree set for function estimation.
    Healy BC; DeGruttola VG; Hu C
    Stat Appl Genet Mol Biol; 2008; 7(1):Article5. PubMed ID: 18312210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-organizing neural networks to support the discovery of DNA-binding motifs.
    Mahony S; Benos PV; Smith TJ; Golden A
    Neural Netw; 2006; 19(6-7):950-62. PubMed ID: 16839740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions.
    Liu L; Pearl DK
    Syst Biol; 2007 Jun; 56(3):504-14. PubMed ID: 17562474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic mixtures on a single tree can mimic a tree of another topology.
    Matsen FA; Steel M
    Syst Biol; 2007 Oct; 56(5):767-75. PubMed ID: 17886146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study on computational two-block motif detection: algorithms and applications.
    Bi C; Leeder JS; Vyhlidal CA
    Mol Pharm; 2008; 5(1):3-16. PubMed ID: 18076137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MotifCut: regulatory motifs finding with maximum density subgraphs.
    Fratkin E; Naughton BT; Brutlag DL; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e150-7. PubMed ID: 16873465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. More robust detection of motifs in coexpressed genes by using phylogenetic information.
    Monsieurs P; Thijs G; Fadda AA; De Keersmaecker SC; Vanderleyden J; De Moor B; Marchal K
    BMC Bioinformatics; 2006 Mar; 7():160. PubMed ID: 16549017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.