BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16362904)

  • 21. Hybrid Gibbs-sampling algorithm for challenging motif discovery: GibbsDST.
    Shida K
    Genome Inform; 2006; 17(2):3-13. PubMed ID: 17503374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mining biological data using self-organizing map.
    Yang ZR; Chou KC
    J Chem Inf Comput Sci; 2003; 43(6):1748-53. PubMed ID: 14632420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast recovery of evolutionary trees with thousands of nodes.
    Csurös M
    J Comput Biol; 2002; 9(2):277-97. PubMed ID: 12015882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A conservative parametric approach to motif significance analysis.
    Keich U; Ng P
    Genome Inform; 2007; 19():61-72. PubMed ID: 18546505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BOOL-AN: a method for comparative sequence analysis and phylogenetic reconstruction.
    Jakó E; Ari E; Ittzés P; Horváth A; Podani J
    Mol Phylogenet Evol; 2009 Sep; 52(3):887-97. PubMed ID: 19422923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of generic spaced motifs using submotif pattern mining.
    Wijaya E; Rajaraman K; Yiu SM; Sung WK
    Bioinformatics; 2007 Jun; 23(12):1476-85. PubMed ID: 17483509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A heuristic Bayesian method for segmenting DNA sequence alignments and detecting evidence for recombination and gene conversion.
    Kedzierska A; Husmeier D
    Stat Appl Genet Mol Biol; 2006; 5():Article27. PubMed ID: 17140392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifying evolutionary trees and substitution parameters for the general Markov model with invariable sites.
    Allman ES; Rhodes JA
    Math Biosci; 2008 Jan; 211(1):18-33. PubMed ID: 17964612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A database of phylogenetically atypical genes in archaeal and bacterial genomes, identified using the DarkHorse algorithm.
    Podell S; Gaasterland T; Allen EE
    BMC Bioinformatics; 2008 Oct; 9():419. PubMed ID: 18840280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating species trees using multiple-allele DNA sequence data.
    Liu L; Pearl DK; Brumfield RT; Edwards SV
    Evolution; 2008 Aug; 62(8):2080-91. PubMed ID: 18462214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phylogenetic supermatrix analysis of GenBank sequences from 2228 papilionoid legumes.
    McMahon MM; Sanderson MJ
    Syst Biol; 2006 Oct; 55(5):818-36. PubMed ID: 17060202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finding motifs from all sequences with and without binding sites.
    Leung HC; Chin FY
    Bioinformatics; 2006 Sep; 22(18):2217-23. PubMed ID: 16870937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Routes are trees: the parsing perspective on protein folding.
    Hockenmaier J; Joshi AK; Dill KA
    Proteins; 2007 Jan; 66(1):1-15. PubMed ID: 17063473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 2D-RNA-coupling numbers: a new computational chemistry approach to link secondary structure topology with biological function.
    González-Díaz H; Agüero-Chapin G; Varona J; Molina R; Delogu G; Santana L; Uriarte E; Podda G
    J Comput Chem; 2007 Apr; 28(6):1049-56. PubMed ID: 17279496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decoding non-unique oligonucleotide hybridization experiments of targets related by a phylogenetic tree.
    Schliep A; Rahmann S
    Bioinformatics; 2006 Jul; 22(14):e424-30. PubMed ID: 16873503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A profile-based deterministic sequential Monte Carlo algorithm for motif discovery.
    Liang KC; Wang X; Anastassiou D
    Bioinformatics; 2008 Jan; 24(1):46-55. PubMed ID: 18024972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial carbohydrate structure database 3: principles and realization.
    Toukach PV
    J Chem Inf Model; 2011 Jan; 51(1):159-70. PubMed ID: 21155523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disk-covering, a fast-converging method for phylogenetic tree reconstruction.
    Huson DH; Nettles SM; Warnow TJ
    J Comput Biol; 1999; 6(3-4):369-86. PubMed ID: 10582573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of a new probabilistic model for recognizing complex patterns in glycans.
    Aoki KF; Ueda N; Yamaguchi A; Kanehisa M; Akutsu T; Mamitsuka H
    Bioinformatics; 2004 Aug; 20 Suppl 1():i6-14. PubMed ID: 15262775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integer programming-based method for grammar-based tree compression and its application to pattern extraction of glycan tree structures.
    Zhao Y; Hayashida M; Akutsu T
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S4. PubMed ID: 21172054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.