These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 16362992)
41. Mechanisms of severe acute respiratory syndrome pathogenesis and innate immunomodulation. Frieman M; Baric R Microbiol Mol Biol Rev; 2008 Dec; 72(4):672-85, Table of Contents. PubMed ID: 19052324 [TBL] [Abstract][Full Text] [Related]
42. Distinct severe acute respiratory syndrome coronavirus-induced acute lung injury pathways in two different nonhuman primate species. Smits SL; van den Brand JM; de Lang A; Leijten LM; van Ijcken WF; van Amerongen G; Osterhaus AD; Andeweg AC; Haagmans BL J Virol; 2011 May; 85(9):4234-45. PubMed ID: 21325418 [TBL] [Abstract][Full Text] [Related]
43. SARS coronavirus and innate immunity. Frieman M; Heise M; Baric R Virus Res; 2008 Apr; 133(1):101-12. PubMed ID: 17451827 [TBL] [Abstract][Full Text] [Related]
44. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Cameron MJ; Bermejo-Martin JF; Danesh A; Muller MP; Kelvin DJ Virus Res; 2008 Apr; 133(1):13-9. PubMed ID: 17374415 [TBL] [Abstract][Full Text] [Related]
45. The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection. Fehr AR; Channappanavar R; Jankevicius G; Fett C; Zhao J; Athmer J; Meyerholz DK; Ahel I; Perlman S mBio; 2016 Dec; 7(6):. PubMed ID: 27965448 [TBL] [Abstract][Full Text] [Related]
46. Interferon interplay helps tissue cells to cope with SARS-coronavirus infection. Kuri T; Weber F Virulence; 2010; 1(4):273-5. PubMed ID: 21178452 [TBL] [Abstract][Full Text] [Related]
47. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Ge XY; Li JL; Yang XL; Chmura AA; Zhu G; Epstein JH; Mazet JK; Hu B; Zhang W; Peng C; Zhang YJ; Luo CM; Tan B; Wang N; Zhu Y; Crameri G; Zhang SY; Wang LF; Daszak P; Shi ZL Nature; 2013 Nov; 503(7477):535-8. PubMed ID: 24172901 [TBL] [Abstract][Full Text] [Related]
48. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. Matsuyama S; Nagata N; Shirato K; Kawase M; Takeda M; Taguchi F J Virol; 2010 Dec; 84(24):12658-64. PubMed ID: 20926566 [TBL] [Abstract][Full Text] [Related]
49. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Pinto D; Park YJ; Beltramello M; Walls AC; Tortorici MA; Bianchi S; Jaconi S; Culap K; Zatta F; De Marco A; Peter A; Guarino B; Spreafico R; Cameroni E; Case JB; Chen RE; Havenar-Daughton C; Snell G; Telenti A; Virgin HW; Lanzavecchia A; Diamond MS; Fink K; Veesler D; Corti D Nature; 2020 Jul; 583(7815):290-295. PubMed ID: 32422645 [TBL] [Abstract][Full Text] [Related]
51. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. Wu K; Peng G; Wilken M; Geraghty RJ; Li F J Biol Chem; 2012 Mar; 287(12):8904-11. PubMed ID: 22291007 [TBL] [Abstract][Full Text] [Related]
52. Cellular entry of the SARS coronavirus. Hofmann H; Pöhlmann S Trends Microbiol; 2004 Oct; 12(10):466-72. PubMed ID: 15381196 [TBL] [Abstract][Full Text] [Related]
53. [Clinical pathology and pathogenesis of severe acute respiratory syndrome]. Zhao JM; Zhou GD; Sun YL; Wang SS; Yang JF; Meng EH; Pan D; Li WS; Zhou XS; Wang YD; Lu JY; Li N; Wang DW; Zhou BC; Zhang TH Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi; 2003 Sep; 17(3):217-21. PubMed ID: 15340561 [TBL] [Abstract][Full Text] [Related]
54. Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease. Frieman M; Yount B; Agnihothram S; Page C; Donaldson E; Roberts A; Vogel L; Woodruff B; Scorpio D; Subbarao K; Baric RS J Virol; 2012 Jan; 86(2):884-97. PubMed ID: 22072787 [TBL] [Abstract][Full Text] [Related]
55. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. Tseng CT; Perrone LA; Zhu H; Makino S; Peters CJ J Immunol; 2005 Jun; 174(12):7977-85. PubMed ID: 15944304 [TBL] [Abstract][Full Text] [Related]
56. SARS-CoV-Encoded Small RNAs Contribute to Infection-Associated Lung Pathology. Morales L; Oliveros JC; Fernandez-Delgado R; tenOever BR; Enjuanes L; Sola I Cell Host Microbe; 2017 Mar; 21(3):344-355. PubMed ID: 28216251 [TBL] [Abstract][Full Text] [Related]
57. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. Cheung CY; Poon LL; Ng IH; Luk W; Sia SF; Wu MH; Chan KH; Yuen KY; Gordon S; Guan Y; Peiris JS J Virol; 2005 Jun; 79(12):7819-26. PubMed ID: 15919935 [TBL] [Abstract][Full Text] [Related]
58. Analysis of ACE2 in polarized epithelial cells: surface expression and function as receptor for severe acute respiratory syndrome-associated coronavirus. Ren X; Glende J; Al-Falah M; de Vries V; Schwegmann-Wessels C; Qu X; Tan L; Tschernig T; Deng H; Naim HY; Herrler G J Gen Virol; 2006 Jun; 87(Pt 6):1691-1695. PubMed ID: 16690935 [TBL] [Abstract][Full Text] [Related]
59. SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium. Sims AC; Burkett SE; Yount B; Pickles RJ Virus Res; 2008 Apr; 133(1):33-44. PubMed ID: 17451829 [TBL] [Abstract][Full Text] [Related]
60. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. Yasui F; Kai C; Kitabatake M; Inoue S; Yoneda M; Yokochi S; Kase R; Sekiguchi S; Morita K; Hishima T; Suzuki H; Karamatsu K; Yasutomi Y; Shida H; Kidokoro M; Mizuno K; Matsushima K; Kohara M J Immunol; 2008 Nov; 181(9):6337-48. PubMed ID: 18941225 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]