BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16363077)

  • 21. Mechanical initiation of intervertebral disc degeneration.
    Adams MA; Freeman BJ; Morrison HP; Nelson IW; Dolan P
    Spine (Phila Pa 1976); 2000 Jul; 25(13):1625-36. PubMed ID: 10870137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Internal strains in healthy and degenerated lumbar intervertebral discs.
    Tsantrizos A; Ito K; Aebi M; Steffen T
    Spine (Phila Pa 1976); 2005 Oct; 30(19):2129-37. PubMed ID: 16205337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical function of vertebral body osteophytes, as revealed by experiments on cadaveric spines.
    Al-Rawahi M; Luo J; Pollintine P; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2011 May; 36(10):770-7. PubMed ID: 20683388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bionate
    Vanaclocha A; Vanaclocha V; Atienza CM; Clavel P; Jordá-Gómez P; Barrios C; Vanaclocha L
    J Orthop Traumatol; 2023 Apr; 24(1):13. PubMed ID: 37041425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anterior vertebral screw strain with and without solid interspace support.
    Spiegel DA; Cunningham BW; Oda I; Dormans JP; McAfee PC; Drummond DS
    Spine (Phila Pa 1976); 2000 Nov; 25(21):2755-61. PubMed ID: 11064520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new distractable implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine.
    Reinhold M; Schmoelz W; Canto F; Krappinger D; Blauth M; Knop C
    Arch Orthop Trauma Surg; 2009 Oct; 129(10):1375-82. PubMed ID: 19190924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can prevention of a reherniation be investigated? Establishment of a herniation model and experiments with an anular closure device.
    Wilke HJ; Ressel L; Heuer F; Graf N; Rath S
    Spine (Phila Pa 1976); 2013 May; 38(10):E587-93. PubMed ID: 23429676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical properties of lumbar spinal motion segments as affected by partial disc removal.
    Goel VK; Nishiyama K; Weinstein JN; Liu YK
    Spine (Phila Pa 1976); 1986 Dec; 11(10):1008-12. PubMed ID: 3576336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural arch load-bearing in old and degenerated spines.
    Pollintine P; Przybyla AS; Dolan P; Adams MA
    J Biomech; 2004 Feb; 37(2):197-204. PubMed ID: 14706322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mechanical behavior of locking compression plates compared with dynamic compression plates in a cadaver radius model.
    Gardner MJ; Brophy RH; Campbell D; Mahajan A; Wright TM; Helfet DL; Lorich DG
    J Orthop Trauma; 2005 Oct; 19(9):597-603. PubMed ID: 16247303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite Element Analysis of a Bionate Ring-Shaped Customized Lumbar Disc Nucleus Prosthesis.
    Vanaclocha-Saiz A; Vanaclocha V; Atienza CM; Clavel P; Jorda-Gomez P; Barrios C; Vanaclocha L
    ACS Appl Bio Mater; 2022 Jan; 5(1):172-182. PubMed ID: 35014829
    [No Abstract]   [Full Text] [Related]  

  • 33. Segmental stability and compressive strength of posterior lumbar interbody fusion implants.
    Tsantrizos A; Baramki HG; Zeidman S; Steffen T
    Spine (Phila Pa 1976); 2000 Aug; 25(15):1899-907. PubMed ID: 10908932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament.
    McAfee PC; Cunningham B; Dmitriev A; Hu N; Woo Kim S; Cappuccino A; Pimenta L
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S176-85. PubMed ID: 14560189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Load transfer characteristics between posterior spinal implants and the lumbar spine under anterior shear loading: an in vitro investigation.
    Melnyk AD; Wen TL; Kingwell S; Chak JD; Singh V; Cripton PA; Fisher CG; Dvorak MF; Oxland TR
    Spine (Phila Pa 1976); 2012 Aug; 37(18):E1126-33. PubMed ID: 22565384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An in vitro model of degenerative lumbar spondylolisthesis.
    Melnyk AD; Kingwell SP; Zhu Q; Chak JD; Cripton PA; Fisher CG; Dvorak MF; Oxland TR
    Spine (Phila Pa 1976); 2013 Jun; 38(14):E870-7. PubMed ID: 23558441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical evaluation of a dynamic pedicle screw fixation device.
    Xu HZ; Wang XY; Chi YL; Zhu QA; Lin Y; Huang QS; Dai LY
    Clin Biomech (Bristol, Avon); 2006 May; 21(4):330-6. PubMed ID: 16434133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc.
    Dooris AP; Goel VK; Grosland NM; Gilbertson LG; Wilder DG
    Spine (Phila Pa 1976); 2001 Mar; 26(6):E122-9. PubMed ID: 11246394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression.
    Johannessen W; Elliott DM
    Spine (Phila Pa 1976); 2005 Dec; 30(24):E724-9. PubMed ID: 16371889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Role of Vertebral Porosity and Implant Loading Mode on Bone-Tissue Stress in the Human Vertebral Body Following Lumbar Total Disc Arthroplasty.
    Bonnheim NB; Adams MF; Wu T; Keaveny TM
    Spine (Phila Pa 1976); 2021 Oct; 46(19):E1022-E1030. PubMed ID: 33660678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.