BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16363096)

  • 41. Calf thymus DNA polymerases alpha and delta are capable of highly processive DNA synthesis.
    Sabatino RD; Myers TW; Bambara RA; Kwon-Shin O; Marraccino RL; Frickey PH
    Biochemistry; 1988 Apr; 27(8):2998-3004. PubMed ID: 3401462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of exposure of DNA to methyl mercury on its activity as a template-primer for DNA polymerases.
    Frenkel GD; Wilson H; Ducote J
    J Inorg Biochem; 1986 Jun; 27(2):113-21. PubMed ID: 3525750
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methods of analyzing processivity.
    Bambara RA; Fay PJ; Mallaber LM
    Methods Enzymol; 1995; 262():270-80. PubMed ID: 8594353
    [No Abstract]   [Full Text] [Related]  

  • 44. Effects of base damages on DNA replication--mechanism of preferential purine nucleotide insertion opposite abasic site in template DNA.
    Ide H; Murayama H; Murakami A; Morii T; Makino K
    Nucleic Acids Symp Ser; 1992; (27):167-8. PubMed ID: 1289805
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Molecular mechanisms of the regularity of nucleic acid biosynthesis. Computer study of the role of polymerases in the formation of irregular pairs by modified bases].
    Poltev VI; Shuliupina NV; Bruskov VI
    Mol Biol (Mosk); 1996; 30(6):1284-98. PubMed ID: 9026719
    [No Abstract]   [Full Text] [Related]  

  • 46. The kinetics and processivity of nucleic acid polymerases.
    McClure WR; Chow Y
    Methods Enzymol; 1980; 64():277-97. PubMed ID: 6990186
    [No Abstract]   [Full Text] [Related]  

  • 47. T4 DNA polymerase. Rates and processivity on single-stranded DNA templates.
    Mace DC; Alberts BM
    J Mol Biol; 1984 Aug; 177(2):295-311. PubMed ID: 6748084
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The incorporation of O6-methyldeoxyguanosine monophosphate and O4-methyldeoxythymidine monophosphate into polynucleotide templates leads to errors during subsequent in vitro DNA synthesis.
    Saffhill R; Hall JA
    Chem Biol Interact; 1985 Dec; 56(2-3):363-70. PubMed ID: 4075456
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancement of the rate of DNA polymerase-alpha activity on duplex DNA by a DNA-binding protein and a DNA-dependent ATPase of mammalian cells.
    Cobianchi F; Riva S; Mastromei G; Spadari S; Pedrali-Noy G; Falaschi A
    Cold Spring Harb Symp Quant Biol; 1979; 43 Pt 1():639-47. PubMed ID: 225121
    [No Abstract]   [Full Text] [Related]  

  • 50. Cross-coupling reactions of nucleoside triphosphates followed by polymerase incorporation. Construction and applications of base-functionalized nucleic acids.
    Hocek M; Fojta M
    Org Biomol Chem; 2008 Jul; 6(13):2233-41. PubMed ID: 18563253
    [TBL] [Abstract][Full Text] [Related]  

  • 51. phi29 DNA polymerase residue Phe128 of the highly conserved (S/T)Lx(2)h motif is required for a stable and functional interaction with the terminal protein.
    Rodríguez I; Lázaro JM; Salas M; de Vega M
    J Mol Biol; 2003 Jan; 325(1):85-97. PubMed ID: 12473453
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of in vitro replication of different DNAs.
    Hurwitz J
    CRC Crit Rev Biochem; 1979 Nov; 7(1):45-74. PubMed ID: 387337
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular mechanisms in genetic stability and change: the role of deoxyribonucleotide pool balance.
    Haynes RH
    Basic Life Sci; 1985; 31():1-23. PubMed ID: 3888171
    [No Abstract]   [Full Text] [Related]  

  • 54. Structural Basis for the KlenTaq DNA Polymerase Catalysed Incorporation of Alkene- versus Alkyne-Modified Nucleotides.
    Hottin A; Betz K; Diederichs K; Marx A
    Chemistry; 2017 Feb; 23(9):2109-2118. PubMed ID: 27901305
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An unnatural base pair system for in vitro replication and transcription.
    Hirao I; Kimoto M; Mitsui T; Fujiwara T; Kawai R; Sato A; Harada Y; Yokoyama S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):33-4. PubMed ID: 17150803
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functions of eukaryotic DNA polymerases.
    Shcherbakova PV; Bebenek K; Kunkel TA
    Sci Aging Knowledge Environ; 2003 Feb; 2003(8):RE3. PubMed ID: 12844548
    [TBL] [Abstract][Full Text] [Related]  

  • 57. T4 replication: what does "processivity" really mean?
    Joyce CM
    Proc Natl Acad Sci U S A; 2004 Jun; 101(22):8255-6. PubMed ID: 15159531
    [No Abstract]   [Full Text] [Related]  

  • 58. Pausing of DNA polymerases on duplex DNA templates due to ligand binding in vitro.
    Smolina IV; Demidov VV; Frank-Kamenetskii MD
    J Mol Biol; 2003 Feb; 326(4):1113-25. PubMed ID: 12589757
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural insights into the origins of DNA polymerase fidelity.
    Beard WA; Wilson SH
    Structure; 2003 May; 11(5):489-96. PubMed ID: 12737815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The N2-ethylguanine and the O6-ethyl- and O6-methylguanine lesions in DNA: contrasting responses from the "bypass" DNA polymerase eta and the replicative DNA polymerase alpha.
    Perrino FW; Blans P; Harvey S; Gelhaus SL; McGrath C; Akman SA; Jenkins GS; LaCourse WR; Fishbein JC
    Chem Res Toxicol; 2003 Dec; 16(12):1616-23. PubMed ID: 14680376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.