These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
520 related articles for article (PubMed ID: 16363169)
1. Culex restuans (Diptera: Culicidae) relative abundance and vector competence for West Nile Virus. Ebel GD; Rochlin I; Longacker J; Kramer LD J Med Entomol; 2005 Sep; 42(5):838-43. PubMed ID: 16363169 [TBL] [Abstract][Full Text] [Related]
2. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999-2003. Andreadis TG; Anderson JF; Vossbrinck CR; Main AJ Vector Borne Zoonotic Dis; 2004; 4(4):360-78. PubMed ID: 15682518 [TBL] [Abstract][Full Text] [Related]
3. Unexpected spatiotemporal abundance of infected Culex restuans suggest a greater role as a West Nile virus vector for this native species. Johnson BJ; Robson MG; Fonseca DM Infect Genet Evol; 2015 Apr; 31():40-7. PubMed ID: 25599877 [TBL] [Abstract][Full Text] [Related]
4. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America. Andreadis TG J Am Mosq Control Assoc; 2012 Dec; 28(4 Suppl):137-51. PubMed ID: 23401954 [TBL] [Abstract][Full Text] [Related]
5. Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Hamer GL; Kitron UD; Goldberg TL; Brawn JD; Loss SR; Ruiz MO; Hayes DB; Walker ED Am J Trop Med Hyg; 2009 Feb; 80(2):268-78. PubMed ID: 19190226 [TBL] [Abstract][Full Text] [Related]
6. Mosquito surveillance for West Nile virus in Connecticut, 2000: isolation from Culex pipiens, Cx. restuans, Cx. salinarius, and Culiseta melanura. Andreadis TG; Anderson JF; Vossbrinck CR Emerg Infect Dis; 2001; 7(4):670-4. PubMed ID: 11585530 [TBL] [Abstract][Full Text] [Related]
7. Modeling the impact of variable climatic factors on the crossover of Culex restauns and Culex pipiens (Diptera: culicidae), vectors of West Nile virus in Illinois. Kunkel KE; Novak RJ; Lampman RL; Gu W Am J Trop Med Hyg; 2006 Jan; 74(1):168-73. PubMed ID: 16407364 [TBL] [Abstract][Full Text] [Related]
8. West Nile virus infection rates and avian serology in east-central Illinois. Lampman RL; Krasavin NM; Ward MP; Beveroth TA; Lankau EW; Alto BW; Muturi E; Novak RJ J Am Mosq Control Assoc; 2013 Jun; 29(2):108-22. PubMed ID: 23923325 [TBL] [Abstract][Full Text] [Related]
9. Diverse host feeding on nesting birds may limit early-season West Nile virus amplification. Egizi AM; Farajollahi A; Fonseca DM Vector Borne Zoonotic Dis; 2014 Jun; 14(6):447-53. PubMed ID: 24745370 [TBL] [Abstract][Full Text] [Related]
10. A two-year evaluation of elevated canopy trapping for Culex mosquitoes and West Nile virus in an operational surveillance program in the northeastern United States. Andreadis TG; Armstrong PM J Am Mosq Control Assoc; 2007 Jun; 23(2):137-48. PubMed ID: 17847845 [TBL] [Abstract][Full Text] [Related]
11. Crossover Dynamics of Culex (Diptera: Culicidae) Vector Populations Determine WNV Transmission Intensity. Tokarz RE; Smith RC J Med Entomol; 2020 Jan; 57(1):289-296. PubMed ID: 31310655 [TBL] [Abstract][Full Text] [Related]
12. West Nile virus risk assessment and the bridge vector paradigm. Kilpatrick AM; Kramer LD; Campbell SR; Alleyne EO; Dobson AP; Daszak P Emerg Infect Dis; 2005 Mar; 11(3):425-9. PubMed ID: 15757558 [TBL] [Abstract][Full Text] [Related]
13. Vector competence of Culiseta incidens and Culex thriambus for West Nile virus. Reisen WK; Fang Y; Martinez VM J Am Mosq Control Assoc; 2006 Dec; 22(4):662-5. PubMed ID: 17304934 [TBL] [Abstract][Full Text] [Related]
14. Vector competence of Aedes vexans (Diptera: Culicidae) for West Nile virus and potential as an enzootic vector. Tiawsirisup S; Kinley JR; Tucker BJ; Evans RB; Rowley WA; Platt KB J Med Entomol; 2008 May; 45(3):452-7. PubMed ID: 18533439 [TBL] [Abstract][Full Text] [Related]
15. Identification of environmental covariates of West Nile virus vector mosquito population abundance. Trawinski PR; Mackay DS Vector Borne Zoonotic Dis; 2010 Jun; 10(5):515-26. PubMed ID: 20482343 [TBL] [Abstract][Full Text] [Related]
16. Distribution and abundance of host-seeking Culex species at three proximate locations with different levels of West Nile virus activity. Rochlin I; Ginsberg HS; Campbell SR Am J Trop Med Hyg; 2009 Apr; 80(4):661-8. PubMed ID: 19346396 [TBL] [Abstract][Full Text] [Related]
17. Geographic variation in vector competence for West Nile virus in the Culex pipiens (Diptera: Culicidae) complex in California. Vaidyanathan R; Scott TW Vector Borne Zoonotic Dis; 2007; 7(2):193-8. PubMed ID: 17627438 [TBL] [Abstract][Full Text] [Related]
18. Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the Northeastern United States. Anderson JF; Main AJ J Infect Dis; 2006 Dec; 194(11):1577-9. PubMed ID: 17083043 [TBL] [Abstract][Full Text] [Related]
19. Vector competence of Culex restuans (Diptera: Culicidae) from two regions of Chicago with low and high prevalence of West Nile virus human infections. Mutebi JP; Swope BN; Doyle MS; Biggerstaff BJ J Med Entomol; 2012 May; 49(3):678-86. PubMed ID: 22679877 [TBL] [Abstract][Full Text] [Related]
20. Vector competence of Argentine mosquitoes (Diptera: Culicidae) for West Nile virus (Flaviviridae: Flavivirus). Micieli MV; Matacchiero AC; Muttis E; Fonseca DM; Aliota MT; Kramer LD J Med Entomol; 2013 Jul; 50(4):853-62. PubMed ID: 23926785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]