These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 16363361)

  • 1. Competitiveness and dry matter allocation of oilseed rape (Brassica napus L.) and two mustards (Sinapis alba L. and S. arvensis L.) under water stress conditions.
    Maataoui A; Talouizte A; Benbella M; Bouhache M
    Commun Agric Appl Biol Sci; 2005; 70(1):67-74. PubMed ID: 16363361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of plant density on competitiveness of Brassica napus, Sinapis alba and S. arvensis under water stress conditions.
    Maataoui A; Talouizte A; Benbella M; Bouhache M
    Commun Agric Appl Biol Sci; 2005; 70(1):61-6. PubMed ID: 16363360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of water stress on the agressiveness of oilsseed rape (Brassica napus L.) and two mustards (Sinapis alba L. and S. arvensis L.).
    Maataoui A; Talouizte A; Benbella M; Bouhache M
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):433-40. PubMed ID: 15149141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Se(IV) phytotoxicity for monocotyledonae cereals (Hordeum vulgare L., Triticum aestivum L.) and dicotyledonae crops (Sinapis alba L., Brassica napus L.).
    Molnárová M; Fargasová A
    J Hazard Mater; 2009 Dec; 172(2-3):854-61. PubMed ID: 19709809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes.
    Halfhill MD; Sutherland JP; Moon HS; Poppy GM; Warwick SI; Weissinger AK; Rufty TW; Raymer PL; Stewart CN
    Mol Ecol; 2005 Sep; 14(10):3177-89. PubMed ID: 16101783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crop-weed competition between sunflower (Helianthus annuus L.) and Convolvulus arvensis L. in substitutive experiments.
    Kazinczi G; Takács A; Horváth J
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):781-6. PubMed ID: 17390820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The expression patterns of SAG12/Cab genes reveal the spatial and temporal progression of leaf senescence in Brassica napus L. with sensitivity to the environment.
    Gombert J; Etienne P; Ourry A; Le Dily F
    J Exp Bot; 2006; 57(9):1949-56. PubMed ID: 16720615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada.
    Yoshimura Y; Beckie HJ; Matsuo K
    Environ Biosafety Res; 2006; 5(2):67-75. PubMed ID: 17328853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes.
    Agerbirk N; Warwick SI; Hansen PR; Olsen CE
    Phytochemistry; 2008 Dec; 69(17):2937-49. PubMed ID: 18995873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental changes in shoot N dynamics of lucerne (Medicago sativa L.) in relation to leaf growth dynamics as a function of plant density and hierarchical position within the canopy.
    Lemaire G; Avice JC; Kim TH; Ourry A
    J Exp Bot; 2005 Mar; 56(413):935-43. PubMed ID: 15710638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria.
    Sheng XF; Xia JJ
    Chemosphere; 2006 Aug; 64(6):1036-42. PubMed ID: 16516946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Barriers to gene flow from oilseed rape (Brassica napus) into populations of Sinapis arvensis.
    Moyes CL; Lilley JM; Casais CA; Cole SG; Haeger PD; Dale PJ
    Mol Ecol; 2002 Jan; 11(1):103-12. PubMed ID: 11903908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased incidence of disease caused by Sclerotinia sclerotiorum and improved plant vigor of oilseed rape with Bacillus subtilis Tu-100.
    Hu X; Roberts DP; Jiang M; Zhang Y
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):802-7. PubMed ID: 15744488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil.
    Bauerle TL; Richards JH; Smart DR; Eissenstat DM
    Plant Cell Environ; 2008 Feb; 31(2):177-86. PubMed ID: 18028280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodiversity of nematofauna of oilseed rape (Brassica napus L.).
    Manachini B; Landi S; Tomasini V
    Commun Agric Appl Biol Sci; 2005; 70(4):927-35. PubMed ID: 16628940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. O
    Kacienė G; Miškelytė D; AbdElgawad H; Beemster G; Asard H; Dikšaitytė A; Žaltauskaitė J; Sujetovienė G; Januškaitienė I; Juknys R
    Plant Physiol Biochem; 2019 Feb; 135():194-205. PubMed ID: 30557848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape.
    Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S
    Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf developmental stage affects sulfate depletion and specific sulfate transporter expression during sulfur deprivation in Brassica napus L.
    Parmar S; Buchner P; Hawkesford MJ
    Plant Biol (Stuttg); 2007 Sep; 9(5):647-53. PubMed ID: 17853364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First Report of Branched Broomrape (Orobanche ramosa) on Oilseed Rape (Brassica napus), Wild Mustard (Sinapis arvensis), and Wild Vetch (Vicia spp.) in Northern Greece.
    Tsialtas JT; Eleftherohorinos IG
    Plant Dis; 2011 Oct; 95(10):1322. PubMed ID: 30731672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brassica cover crops for nitrogen retention in the Mid-Atlantic coastal plain.
    Dean JE; Weil RR
    J Environ Qual; 2009; 38(2):520-8. PubMed ID: 19202022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.