These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16363783)

  • 1. Atmospheric wavefront phase recovery by use of specialized hardware: graphical processing units and field-programmable gate arrays.
    Marichal-Hernández JG; Rodríguez-Ramos LF; Rosa F; Rodríguez-Ramos JM
    Appl Opt; 2005 Dec; 44(35):7587-94. PubMed ID: 16363783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient implementation of the Shack-Hartmann centroid extraction for edge computing.
    Mocci J; Busato F; Bombieri N; Bonora S; Muradore R
    J Opt Soc Am A Opt Image Sci Vis; 2020 Oct; 37(10):1548-1556. PubMed ID: 33104604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field Programmable Gate Arrays for Enhancing the Speed and Energy Efficiency of Quantum Dynamics Simulations.
    Rodrı Guez-Borbón JM; Kalantar A; Yamijala SSRKC; Oviedo MB; Najjar W; Wong BM
    J Chem Theory Comput; 2020 Apr; 16(4):2085-2098. PubMed ID: 32216276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPU implementation for spline-based wavefront reconstruction.
    Brunner E; de Visser CC; Vuik C; Verhaegen M
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):859-872. PubMed ID: 29877328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave front sensor and zonal control algorithm.
    Dayton D; Sandven S; Gonglewski J; Browne S; Rogers S; McDermott S
    Opt Express; 1997 Nov; 1(11):338-46. PubMed ID: 19377554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mid-infrared Shack-Hartmann wavefront sensor fully cryogenic using extended source for endoatmospheric applications.
    Robert C; Michau V; Fleury B; Magli S; Vial L
    Opt Express; 2012 Jul; 20(14):15636-53. PubMed ID: 22772257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.
    Baranec C; Dekany R
    Appl Opt; 2008 Oct; 47(28):5155-62. PubMed ID: 18830305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Easily implementable field programmable gate array-based adaptive optics system with state-space multichannel control.
    Chang CY; Ke BT; Su HW; Yen WC; Chen SJ
    Rev Sci Instrum; 2013 Sep; 84(9):095112. PubMed ID: 24089871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algorithm based on the optimal block zonal strategy for fast wavefront reconstruction.
    Ji Z; Zhang X; Zheng Z; Li Y; Chang J
    Appl Opt; 2020 Feb; 59(5):1383-1396. PubMed ID: 32225393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time turbulence profiling with a pair of laser guide star Shack-Hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes.
    Gilles L; Ellerbroek BL
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A76-83. PubMed ID: 21045893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide mass fingerprinting using field-programmable gate arrays.
    Bogdan IA; Coca D; Beynon RJ
    IEEE Trans Biomed Circuits Syst; 2009 Jun; 3(3):142-9. PubMed ID: 23853215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximum-Likelihood Estimation With a Contracting-Grid Search Algorithm.
    Hesterman JY; Caucci L; Kupinski MA; Barrett HH; Furenlid LR
    IEEE Trans Nucl Sci; 2010 Jun; 57(3):1077-1084. PubMed ID: 20824155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive optics for dynamic aberration compensation using parallel model-based controllers based on a field programmable gate array.
    Wu YC; Chang JC; Chang CY
    Opt Express; 2021 Jul; 29(14):21129-21142. PubMed ID: 34265906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics.
    Dayton DC; Browne SL; Sandven SP; Gonglewski JD; Kudryashov AV
    Appl Opt; 1998 Aug; 37(24):5579-89. PubMed ID: 18286042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A real-time capable software-defined receiver using GPU for adaptive anti-jam GPS sensors.
    Seo J; Chen YH; De Lorenzo DS; Lo S; Enge P; Akos D; Lee J
    Sensors (Basel); 2011; 11(9):8966-91. PubMed ID: 22164116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Durham adaptive optics real-time controller.
    Basden A; Geng D; Myers R; Younger E
    Appl Opt; 2010 Nov; 49(32):6354-63. PubMed ID: 21068868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Deep Neural Networks Using SoCs with OpenCL.
    Gadea-Gironés R; Colom-Palero R; Herrero-Bosch V
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29710875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple broadband implementation of a phase contrast wavefront sensor for adaptive optics.
    Bloemhof E; Wallace J
    Opt Express; 2004 Dec; 12(25):6240-5. PubMed ID: 19488269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device.
    Vohnsen B; Carmichael Martins A; Qaysi S; Sharmin N
    Appl Opt; 2018 Aug; 57(22):E199-E204. PubMed ID: 30117885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed Shack-Hartmann wavefront sensor design with commercial off-the-shelf optics.
    Widiker JJ; Harris SR; Duncan BD
    Appl Opt; 2006 Jan; 45(2):383-95. PubMed ID: 16422170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.