BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16364055)

  • 1. Prooxidant action of hinokitiol: hinokitiol-iron dependent generation of reactive oxygen species.
    Murakami K; Ohara Y; Haneda M; Tsubouchi R; Yoshino M
    Basic Clin Pharmacol Toxicol; 2005 Dec; 97(6):392-4. PubMed ID: 16364055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prooxidant action of maltol: role of transition metals in the generation of reactive oxygen species and enhanced formation of 8-hydroxy-2'-deoxyguanosine formation in DNA.
    Murakami K; Ishida K; Watakabe K; Tsubouchi R; Haneda M; Yoshino M
    Biometals; 2006 Jun; 19(3):253-7. PubMed ID: 16799863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prooxidant action of furanone compounds: implication of reactive oxygen species in the metal-dependent strand breaks and the formation of 8-hydroxy-2'-deoxyguanosine in DNA.
    Murakami K; Haneda M; Makino T; Yoshino M
    Food Chem Toxicol; 2007 Jul; 45(7):1258-62. PubMed ID: 17316945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prooxidant action of rosmarinic acid: transition metal-dependent generation of reactive oxygen species.
    Murakami K; Haneda M; Qiao S; Naruse M; Yoshino M
    Toxicol In Vitro; 2007 Jun; 21(4):613-7. PubMed ID: 17267171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prooxidant action of rhodizonic acid: transition metal-dependent generation of reactive oxygen species causing the formation of 8-hydroxy-2'-deoxyguanosine formation in DNA.
    Murakami K; Haneda M; Naruse M; Yoshino M
    Toxicol In Vitro; 2006 Sep; 20(6):910-4. PubMed ID: 16504460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prooxidant action of xanthurenic acid and quinoline compounds: role of transition metals in the generation of reactive oxygen species and enhanced formation of 8-hydroxy-2'-deoxyguanosine in DNA.
    Murakami K; Haneda M; Yoshino M
    Biometals; 2006 Aug; 19(4):429-35. PubMed ID: 16841252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maltol/iron-mediated apoptosis in HL60 cells: participation of reactive oxygen species.
    Murakami K; Ishida K; Watakabe K; Tsubouchi R; Naruse M; Yoshino M
    Toxicol Lett; 2006 Feb; 161(2):102-7. PubMed ID: 16143472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of reactive oxygen species by hydroxypyridone compound/iron complexes.
    Murakami K; Yoshino M
    Redox Rep; 2020 Dec; 25(1):59-63. PubMed ID: 32615878
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of fructose 1,6-bisphosphate on the iron redox state relating to the generation of reactive oxygen species.
    Murakami K; Yoshino M
    Biometals; 2015 Aug; 28(4):687-91. PubMed ID: 25940829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective Role of Hinokitiol Against H
    Xu Y; Wang S; Miao Q; Jin K; Lou L; Ye X; Xi Y; Ye J
    Curr Eye Res; 2017 Jan; 42(1):47-53. PubMed ID: 27269503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prooxidant activity of curcumin: copper-dependent formation of 8-hydroxy-2'-deoxyguanosine in DNA and induction of apoptotic cell death.
    Yoshino M; Haneda M; Naruse M; Htay HH; Tsubouchi R; Qiao SL; Li WH; Murakami K; Yokochi T
    Toxicol In Vitro; 2004 Dec; 18(6):783-9. PubMed ID: 15465643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a combination of hinokitiol (β-thujaplicin) and an organic acid mixture on ruminal fermentation in heifers fed a high-grain diet.
    Ishii J; Omura H; Mitsui T; Eguchi N; Ueno T; Goto H; Ito H
    Anim Sci J; 2012 Jan; 83(1):36-42. PubMed ID: 22250737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of reactive oxygen species from Hinokitiol under near-UV irradiation.
    Shibata H; Nagamine T; Wang Y; Ishikawa T; Sawa Y
    Biosci Biotechnol Biochem; 2003 Sep; 67(9):1996-8. PubMed ID: 14519989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hinokitiol inhibits compound action potentials in the frog sciatic nerve.
    Magori N; Fujita T; Kumamoto E
    Eur J Pharmacol; 2018 Jan; 819():254-260. PubMed ID: 29225186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial activity and metalloprotease inhibition of hinokitiol-related compounds, the constituents of Thujopsis dolabrata S. and Z. hondai MAK.
    Inamori Y; Shinohara S; Tsujibo H; Okabe T; Morita Y; Sakagami Y; Kumeda Y; Ishida N
    Biol Pharm Bull; 1999 Sep; 22(9):990-3. PubMed ID: 10513629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of the bactericidal activity of hinokitiol.
    Morita Y; Sakagami Y; Okabe T; Ohe T; Inamori Y; Ishida N
    Biocontrol Sci; 2007 Sep; 12(3):101-10. PubMed ID: 17927050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of tropolone derivatives and evaluation of their in vitro neuroprotective activity.
    Koufaki M; Theodorou E; Alexi X; Nikoloudaki F; Alexis MN
    Eur J Med Chem; 2010 Mar; 45(3):1107-12. PubMed ID: 20045220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Antimicrobial activity of hinokitiol against Legionella pneumophila].
    Ishimatsu S; Ohga Y; Ishidao T; Hori H
    J UOEH; 2003 Dec; 25(4):435-9. PubMed ID: 14692345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hinokitiol, a natural tropolone derivative, inhibits TNF-alpha production in LPS-activated macrophages via suppression of NF-kappaB.
    Byeon SE; Lee YG; Kim JC; Han JG; Lee HY; Cho JY
    Planta Med; 2008 Jun; 74(8):828-33. PubMed ID: 18537078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro inhibitory effects of hinokitiol on proliferation of Chlamydia trachomatis.
    Yamano H; Yamazaki T; Sato K; Shiga S; Hagiwara T; Ouchi K; Kishimoto T
    Antimicrob Agents Chemother; 2005 Jun; 49(6):2519-21. PubMed ID: 15917561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.