These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16364055)

  • 1. Prooxidant action of hinokitiol: hinokitiol-iron dependent generation of reactive oxygen species.
    Murakami K; Ohara Y; Haneda M; Tsubouchi R; Yoshino M
    Basic Clin Pharmacol Toxicol; 2005 Dec; 97(6):392-4. PubMed ID: 16364055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prooxidant action of maltol: role of transition metals in the generation of reactive oxygen species and enhanced formation of 8-hydroxy-2'-deoxyguanosine formation in DNA.
    Murakami K; Ishida K; Watakabe K; Tsubouchi R; Haneda M; Yoshino M
    Biometals; 2006 Jun; 19(3):253-7. PubMed ID: 16799863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prooxidant action of furanone compounds: implication of reactive oxygen species in the metal-dependent strand breaks and the formation of 8-hydroxy-2'-deoxyguanosine in DNA.
    Murakami K; Haneda M; Makino T; Yoshino M
    Food Chem Toxicol; 2007 Jul; 45(7):1258-62. PubMed ID: 17316945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prooxidant action of rosmarinic acid: transition metal-dependent generation of reactive oxygen species.
    Murakami K; Haneda M; Qiao S; Naruse M; Yoshino M
    Toxicol In Vitro; 2007 Jun; 21(4):613-7. PubMed ID: 17267171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prooxidant action of rhodizonic acid: transition metal-dependent generation of reactive oxygen species causing the formation of 8-hydroxy-2'-deoxyguanosine formation in DNA.
    Murakami K; Haneda M; Naruse M; Yoshino M
    Toxicol In Vitro; 2006 Sep; 20(6):910-4. PubMed ID: 16504460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prooxidant action of xanthurenic acid and quinoline compounds: role of transition metals in the generation of reactive oxygen species and enhanced formation of 8-hydroxy-2'-deoxyguanosine in DNA.
    Murakami K; Haneda M; Yoshino M
    Biometals; 2006 Aug; 19(4):429-35. PubMed ID: 16841252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maltol/iron-mediated apoptosis in HL60 cells: participation of reactive oxygen species.
    Murakami K; Ishida K; Watakabe K; Tsubouchi R; Naruse M; Yoshino M
    Toxicol Lett; 2006 Feb; 161(2):102-7. PubMed ID: 16143472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of reactive oxygen species by hydroxypyridone compound/iron complexes.
    Murakami K; Yoshino M
    Redox Rep; 2020 Dec; 25(1):59-63. PubMed ID: 32615878
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of fructose 1,6-bisphosphate on the iron redox state relating to the generation of reactive oxygen species.
    Murakami K; Yoshino M
    Biometals; 2015 Aug; 28(4):687-91. PubMed ID: 25940829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective Role of Hinokitiol Against H
    Xu Y; Wang S; Miao Q; Jin K; Lou L; Ye X; Xi Y; Ye J
    Curr Eye Res; 2017 Jan; 42(1):47-53. PubMed ID: 27269503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prooxidant activity of curcumin: copper-dependent formation of 8-hydroxy-2'-deoxyguanosine in DNA and induction of apoptotic cell death.
    Yoshino M; Haneda M; Naruse M; Htay HH; Tsubouchi R; Qiao SL; Li WH; Murakami K; Yokochi T
    Toxicol In Vitro; 2004 Dec; 18(6):783-9. PubMed ID: 15465643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a combination of hinokitiol (β-thujaplicin) and an organic acid mixture on ruminal fermentation in heifers fed a high-grain diet.
    Ishii J; Omura H; Mitsui T; Eguchi N; Ueno T; Goto H; Ito H
    Anim Sci J; 2012 Jan; 83(1):36-42. PubMed ID: 22250737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of reactive oxygen species from Hinokitiol under near-UV irradiation.
    Shibata H; Nagamine T; Wang Y; Ishikawa T; Sawa Y
    Biosci Biotechnol Biochem; 2003 Sep; 67(9):1996-8. PubMed ID: 14519989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hinokitiol inhibits compound action potentials in the frog sciatic nerve.
    Magori N; Fujita T; Kumamoto E
    Eur J Pharmacol; 2018 Jan; 819():254-260. PubMed ID: 29225186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial activity and metalloprotease inhibition of hinokitiol-related compounds, the constituents of Thujopsis dolabrata S. and Z. hondai MAK.
    Inamori Y; Shinohara S; Tsujibo H; Okabe T; Morita Y; Sakagami Y; Kumeda Y; Ishida N
    Biol Pharm Bull; 1999 Sep; 22(9):990-3. PubMed ID: 10513629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of the bactericidal activity of hinokitiol.
    Morita Y; Sakagami Y; Okabe T; Ohe T; Inamori Y; Ishida N
    Biocontrol Sci; 2007 Sep; 12(3):101-10. PubMed ID: 17927050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of tropolone derivatives and evaluation of their in vitro neuroprotective activity.
    Koufaki M; Theodorou E; Alexi X; Nikoloudaki F; Alexis MN
    Eur J Med Chem; 2010 Mar; 45(3):1107-12. PubMed ID: 20045220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Antimicrobial activity of hinokitiol against Legionella pneumophila].
    Ishimatsu S; Ohga Y; Ishidao T; Hori H
    J UOEH; 2003 Dec; 25(4):435-9. PubMed ID: 14692345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hinokitiol, a natural tropolone derivative, inhibits TNF-alpha production in LPS-activated macrophages via suppression of NF-kappaB.
    Byeon SE; Lee YG; Kim JC; Han JG; Lee HY; Cho JY
    Planta Med; 2008 Jun; 74(8):828-33. PubMed ID: 18537078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro inhibitory effects of hinokitiol on proliferation of Chlamydia trachomatis.
    Yamano H; Yamazaki T; Sato K; Shiga S; Hagiwara T; Ouchi K; Kishimoto T
    Antimicrob Agents Chemother; 2005 Jun; 49(6):2519-21. PubMed ID: 15917561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.