These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16364331)

  • 1. Comparison of the finite helical axis and the rectangular coordinate system in representing orthodontic tooth movement.
    Hayashi K; DeLong R; Mizoguchi I
    J Biomech; 2006; 39(16):2925-33. PubMed ID: 16364331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basic behavior of the finite helical axis in a simple tooth movement simulation.
    Hayashi K; Tanaka H; Hikita K; Mizoguchi I
    Med Eng Phys; 2004 Dec; 26(10):867-72. PubMed ID: 15567702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional analysis of orthodontic tooth movement based on XYZ and finite helical axis systems.
    Hayashi K; Uechi J; Lee SP; Mizoguchi I
    Eur J Orthod; 2007 Dec; 29(6):589-95. PubMed ID: 17947350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of maxillary canine retraction with sliding mechanics and a retraction spring: a three-dimensional analysis based on a midpalatal orthodontic implant.
    Hayashi K; Uechi J; Murata M; Mizoguchi I
    Eur J Orthod; 2004 Dec; 26(6):585-9. PubMed ID: 15650067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation study for a finite helical axis analysis of tooth movement.
    Hayashi K; Hamaya M; Mizoguchi I
    Angle Orthod; 2005 May; 75(3):350-5. PubMed ID: 15898372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biomechanical study on orthodontic tooth movement: changes in biomechanical property of the periodontal tissue in terms of tooth mobility].
    Inoue Y
    Osaka Daigaku Shigaku Zasshi; 1989 Dec; 34(2):291-305. PubMed ID: 2488921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the center of resistance of maxillary anterior teeth subjected to retraction forces in sliding mechanics. An in vivo study.
    Sia S; Koga Y; Yoshida N
    Angle Orthod; 2007 Nov; 77(6):999-1003. PubMed ID: 18004933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical simulation of orthodontic tooth movement produced by a canine retraction spring.
    Kojima Y; Mizuno T; Umemura S; Fukui H
    Dent Mater J; 2007 Jul; 26(4):561-7. PubMed ID: 17886461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of canine retraction by sliding mechanics.
    Kojima Y; Fukui H
    Am J Orthod Dentofacial Orthop; 2005 May; 127(5):542-51. PubMed ID: 15877034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moment-to-force ratio.
    Nahoum HI
    Am J Orthod Dentofacial Orthop; 2008 Aug; 134(2):176-7; discussion 177. PubMed ID: 18675192
    [No Abstract]   [Full Text] [Related]  

  • 11. The force requirements for tooth movement, Part I: Tipping and bodily movement.
    Lee BW
    Aust Orthod J; 1995 Mar; 13(4):238-48. PubMed ID: 8975662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moment-to-force ratio, center of rotation, and force level: a finite element study predicting their interdependency for simulated orthodontic loading regimens.
    Cattaneo PM; Dalstra M; Melsen B
    Am J Orthod Dentofacial Orthop; 2008 May; 133(5):681-9. PubMed ID: 18456141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of increasing the vertical intrusive force to obtain torque control in lingual orthodontics: A three-dimensional finite element method study.
    Mathew RN; Katyal A; Shetty A; Krishna Nayak US
    Indian J Dent Res; 2016; 27(2):163-7. PubMed ID: 27237207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of movement rate with different initial moment-to-force ratios.
    Li S; Chen J; Kula KS
    Am J Orthod Dentofacial Orthop; 2019 Aug; 156(2):203-209. PubMed ID: 31375230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A clinical study of maxillary canine retraction with a retraction spring and with sliding mechanics.
    Ziegler P; Ingervall B
    Am J Orthod Dentofacial Orthop; 1989 Feb; 95(2):99-106. PubMed ID: 2916474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital macro-photogrammetry in orthodontic tooth movement: case report.
    Hlongwa P; Sander FG; Geiger M
    SADJ; 2007 Nov; 62(10):446-7, 450. PubMed ID: 18500106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for the three-dimensional (3-D) analysis of orthodontic tooth movement-calculation of rotation about and translation along the finite helical axis.
    Hayashi K; Araki Y; Uechi J; Ohno H; Mizoguchi I
    J Biomech; 2002 Jan; 35(1):45-51. PubMed ID: 11747882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of configuration of attachment in tooth translation with transparent tooth correction by appropriate moment-to-force ratios: Biomechanical analysis.
    Cai Y; He B; Yang X; Yao J
    Biomed Mater Eng; 2015; 26 Suppl 1():S507-17. PubMed ID: 26406042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lever-arm and mini-implant system for anterior torque control during retraction in lingual orthodontic treatment.
    Hong RK; Heo JM; Ha YK
    Angle Orthod; 2005 Jan; 75(1):129-41. PubMed ID: 15747828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Duration and anchorage management of canine retraction with bodily versus tipping mechanics.
    Shpack N; Davidovitch M; Sarne O; Panayi N; Vardimon AD
    Angle Orthod; 2008 Jan; 78(1):95-100. PubMed ID: 18193953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.