BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16364398)

  • 1. The impact of selected water quality parameters on the inactivation of Bacillus subtilis spores by monochloramine and ozone.
    Dow SM; Barbeau B; von Gunten U; Chandrakanth M; Amy G; Hernandez M
    Water Res; 2006 Jan; 40(2):373-82. PubMed ID: 16364398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of Bacillus subtilis spores with ozone and monochloramine.
    Larson MA; Mariñas BJ
    Water Res; 2003 Feb; 37(4):833-44. PubMed ID: 12531265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic inactivation of Cryptosporidium parvum using ozone followed by monochloramine in two natural waters.
    Biswas K; Craik S; Smith DW; Belosevic M
    Water Res; 2005 Sep; 39(14):3167-76. PubMed ID: 16000207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of Bacillus subtilis spores and formation of bromate during ozonation.
    Driedger A; Staub E; Pinkernell U; Mariñas B; Köster W; Von Gunten U
    Water Res; 2001 Aug; 35(12):2950-60. PubMed ID: 11471695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of disinfectant concentration and pH in the inactivation kinetics of Cryptosporidium parvum oocysts with ozone and monochloramine.
    Rennecker JL; Kim JH; Corona-Vasquez B; Mariñas BJ
    Environ Sci Technol; 2001 Jul; 35(13):2752-7. PubMed ID: 11452604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbicidal efficacy of an advanced oxidation process using ozone/hydrogen peroxide in water treatment.
    Sommer R; Pribil W; Pfleger S; Haider T; Werderitsch M; Gehringer P
    Water Sci Technol; 2004; 50(1):159-64. PubMed ID: 15318503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ozone inactivation of resistant microorganisms: Laboratory analysis and evaluation of the efficiency of plants.
    Talbot P; Martinelli L; Talvy S; Chauveheid E; Haut B
    Water Res; 2012 Nov; 46(18):5893-903. PubMed ID: 22959560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of Bacillus subtilis spores during ozonation in water treatment plant: influence of pre-treatment and consequences for positioning of the ozonation step.
    Choi Y; Cho M; Lee Y; Choi J; Yoon J
    Chemosphere; 2007 Oct; 69(5):675-81. PubMed ID: 17604815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relevance of diffusion through bacterial spore coats/membranes and the associated concentration boundary layers in the initial lag phase of inactivation: a case study for Bacillus subtilis with ozone and monochloramine.
    Fernando WJ; Othman R
    Math Biosci; 2006 Feb; 199(2):175-87. PubMed ID: 16387333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stochastic model of an ozonation reactor.
    Gujer W; von Gunten U
    Water Res; 2003 Apr; 37(7):1667-77. PubMed ID: 12600396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine.
    von Gunten U
    Water Res; 2003 Apr; 37(7):1469-87. PubMed ID: 12600375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Fe(VI) (FeO4(2-)) and ozone in inactivating Bacillus subtilis spores.
    Makky EA; Park GS; Choi IW; Cho SI; Kim H
    Chemosphere; 2011 May; 83(9):1228-33. PubMed ID: 21489600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential inactivation of Cryptosporidium parvum oocysts with chlorine dioxide followed by free chlorine or monochloramine.
    Corona-Vasquez B; Rennecker JL; Driedger AM; Mariñas BJ
    Water Res; 2002 Jan; 36(1):178-88. PubMed ID: 11766793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe.
    Jung Y; Yoon Y; Hong E; Kwon M; Kang JW
    Mar Pollut Bull; 2013 Jul; 72(1):71-9. PubMed ID: 23711837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta-endosulfan removal from water by ozone oxidation.
    Yazgan MS; Kinaci C
    Water Sci Technol; 2003; 48(11-12):511-7. PubMed ID: 14753575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of a magnetic ion exchange resin on ozone demand and bromate formation during drinking water treatment.
    Johnson CJ; Singer PC
    Water Res; 2004 Oct; 38(17):3738-50. PubMed ID: 15350426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential inactivation of Cryptosporidium parvum using ozone and chlorine.
    Li H; Finch GR; Smith DW; Belosevic M
    Water Res; 2001 Dec; 35(18):4339-48. PubMed ID: 11763036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Kinetics of monochloramine decay in disinfection of drinking water].
    Liu SG; Zhu ZL; Han C; Qiu YL; Zhao JF
    Huan Jing Ke Xue; 2009 Sep; 30(9):2543-9. PubMed ID: 19927801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative evaluation of the synergistic sequential inactivation of Bacillus subtilis spores with ozone followed by chlorine.
    Cho M; Chung H; Yoon J
    Environ Sci Technol; 2003 May; 37(10):2134-8. PubMed ID: 12785518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of Cryptosporidium parvum oocysts with sequential application of ozone and combined chlorine.
    Rennecker JL; Corona-Vasquez B; Driedger AM; Rubin SA; Mariñas BJ
    Water Sci Technol; 2001; 43(12):167-70. PubMed ID: 11464747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.