These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
674 related articles for article (PubMed ID: 16364521)
21. Nitrate leaching to shallow groundwater systems from agricultural fields with different management practices. Nila Rekha P; Kanwar RS; Nayak AK; Hoang CK; Pederson CH J Environ Monit; 2011 Sep; 13(9):2550-8. PubMed ID: 21785805 [TBL] [Abstract][Full Text] [Related]
22. Effect of manure application timing, crop, and soil type on nitrate leaching. van Es HM; Sogbedji JM; Schindelbeck RR J Environ Qual; 2006; 35(2):670-9. PubMed ID: 16510712 [TBL] [Abstract][Full Text] [Related]
23. Manure placement depth impacts on crop yields and N retained in soil. Reiman M; Clay DE; Carlson CG; Clay SA; Reicks G; Clay DW; Humburg DE J Environ Sci Health B; 2009 Jan; 44(1):76-85. PubMed ID: 19089718 [TBL] [Abstract][Full Text] [Related]
24. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Babiker IS; Mohamed MA; Terao H; Kato K; Ohta K Environ Int; 2004 Feb; 29(8):1009-17. PubMed ID: 14680883 [TBL] [Abstract][Full Text] [Related]
25. Nitrogen source track and associated isotopic dynamic characteristic in a complex ecosystem: A case study of a subtropical watershed, China. Hao Z; Zhang X; Gao Y; Xu Z; Yang F; Wen X; Wang Y Environ Pollut; 2018 May; 236():177-187. PubMed ID: 29414338 [TBL] [Abstract][Full Text] [Related]
26. Nitrate and fluoride contamination in groundwater of an intensively managed agroecosystem: a functional relationship. Kundu MC; Mandal B; Hazra GC Sci Total Environ; 2009 Apr; 407(8):2771-82. PubMed ID: 19195681 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the STICS soil-crop model. Jégo G; Martínez M; Antigüedad I; Launay M; Sanchez-Pérez JM; Justes E Sci Total Environ; 2008 May; 394(2-3):207-21. PubMed ID: 18328537 [TBL] [Abstract][Full Text] [Related]
28. Field evaluation of a model for predicting nitrogen losses from drained lands. Youssef MA; Skaggs RW; Chescheir GM; Gilliam JW J Environ Qual; 2006; 35(6):2026-42. PubMed ID: 17071872 [TBL] [Abstract][Full Text] [Related]
29. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management. Huang T; Ju X; Yang H Sci Rep; 2017 Feb; 7():42247. PubMed ID: 28176865 [TBL] [Abstract][Full Text] [Related]
30. Economically optimal nitrogen rate reduces soil residual nitrate. Hong N; Scharf PC; Davis JG; Kitchen NR; Sudduth KA J Environ Qual; 2007; 36(2):354-62. PubMed ID: 17255622 [TBL] [Abstract][Full Text] [Related]
31. Interception of residual nitrate from a calcareous alluvial soil profile on the North China Plain by deep-rooted crops: a 15N tracer study. Ju XT; Gao Q; Christie P; Zhang FS Environ Pollut; 2007 Mar; 146(2):534-42. PubMed ID: 16979272 [TBL] [Abstract][Full Text] [Related]
33. Groundwater-borne nitrate intakes into surface waters in Germany. Kunkel R; Bach M; Behrendt H; Wendland F Water Sci Technol; 2004; 49(3):11-9. PubMed ID: 15053094 [TBL] [Abstract][Full Text] [Related]
34. [Characteristics of soil nitrate accumulation and leaching under different long-term nitrogen application rates in winter wheat and summer maize rotation system.]. Weng LY; Yang XQ; Lyu MJ; Xin SY; Chen S; Ma WQ; Wei J Ying Yong Sheng Tai Xue Bao; 2018 Aug; 29(8):2551-2558. PubMed ID: 30182594 [TBL] [Abstract][Full Text] [Related]
35. Nitrate leaching from open-field and greenhouse vegetable systems in China: a meta-analysis. Wang X; Zou C; Gao X; Guan X; Zhang Y; Shi X; Chen X Environ Sci Pollut Res Int; 2018 Nov; 25(31):31007-31016. PubMed ID: 30182316 [TBL] [Abstract][Full Text] [Related]
36. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: a two-year field study. Gao B; Ju X; Su F; Meng Q; Oenema O; Christie P; Chen X; Zhang F Sci Total Environ; 2014 Feb; 472():112-24. PubMed ID: 24291136 [TBL] [Abstract][Full Text] [Related]
37. Predicting unsaturated zone nitrogen mass balances in agricultural settings of the United States. Nolan BT; Puckett LJ; Ma L; Green CT; Bayless ER; Malone RW J Environ Qual; 2010; 39(3):1051-65. PubMed ID: 20400601 [TBL] [Abstract][Full Text] [Related]
38. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes. Hu XK; Su F; Ju XT; Gao B; Oenema O; Christie P; Huang BX; Jiang RF; Zhang FS Environ Pollut; 2013 May; 176():198-207. PubMed ID: 23434574 [TBL] [Abstract][Full Text] [Related]
39. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. Lockhart KM; King AM; Harter T J Contam Hydrol; 2013 Aug; 151():140-54. PubMed ID: 23800783 [TBL] [Abstract][Full Text] [Related]
40. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. He F; Jiang R; Chen Q; Zhang F; Su F Environ Pollut; 2009 May; 157(5):1666-72. PubMed ID: 19167792 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]