BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 16364604)

  • 1. Transmembrane domain prediction and consensus sequence identification of the oligopeptide transport family.
    Wiles AM; Naider F; Becker JM
    Res Microbiol; 2006 May; 157(4):395-406. PubMed ID: 16364604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary transporters of the 2HCT family contain two homologous domains with inverted membrane topology and trans re-entrant loops.
    Lolkema JS; Sobczak I; Slotboom DJ
    FEBS J; 2005 May; 272(9):2334-44. PubMed ID: 15853816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a novel domain--DIM, which defines a new family composed mainly of bacterial membrane proteins.
    Lai X; Guo J; Zhang X; Wang H
    FEMS Microbiol Lett; 2005 May; 246(1):87-90. PubMed ID: 15869966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved pore-forming regions in polypeptide-transporting proteins.
    Moslavac S; Mirus O; Bredemeier R; Soll J; von Haeseler A; Schleiff E
    FEBS J; 2005 Mar; 272(6):1367-78. PubMed ID: 15752354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional importance of GGXG sequence motifs in putative reentrant loops of 2HCT and ESS transport proteins.
    Dobrowolski A; Lolkema JS
    Biochemistry; 2009 Aug; 48(31):7448-56. PubMed ID: 19594131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes.
    Kahsay RY; Gao G; Liao L
    Bioinformatics; 2005 May; 21(9):1853-8. PubMed ID: 15691854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence and hydropathy profile analysis of two classes of secondary transporters.
    Lolkema JS; Slotboom DJ
    Mol Membr Biol; 2005; 22(3):177-89. PubMed ID: 16096261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence analysis of the non-recurring C-terminal domains shows that insect lipoprotein receptors constitute a distinct group of LDL receptor family members.
    Rodenburg KW; Smolenaars MM; Van Hoof D; Van der Horst DJ
    Insect Biochem Mol Biol; 2006 Apr; 36(4):250-63. PubMed ID: 16551539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics-based consensus prediction of protein retention in a bacterial membrane.
    Tjalsma H; van Dijl JM
    Proteomics; 2005 Nov; 5(17):4472-82. PubMed ID: 16220534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hidden Markov model analysis of motifs in steroid dehydrogenases and their homologs.
    Grundy WN; Bailey TL; Elkan CP; Baker ME
    Biochem Biophys Res Commun; 1997 Feb; 231(3):760-6. PubMed ID: 9070888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity.
    Montanini B; Blaudez D; Jeandroz S; Sanders D; Chalot M
    BMC Genomics; 2007 Apr; 8():107. PubMed ID: 17448255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel protein domains and motifs in the marine planctomycete Rhodopirellula baltica.
    Studholme DJ; Fuerst JA; Bateman A
    FEMS Microbiol Lett; 2004 Jul; 236(2):333-40. PubMed ID: 15251216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of new claudin family members by a novel PSI-BLAST based approach with enhanced specificity.
    Wu J; Helftenbein G; Koslowski M; Sahin U; Tureci O
    Proteins; 2006 Dec; 65(4):808-15. PubMed ID: 17022085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane topology of the chromate transporter ChrA of Pseudomonas aeruginosa.
    Jiménez-Mejía R; Campos-García J; Cervantes C
    FEMS Microbiol Lett; 2006 Sep; 262(2):178-84. PubMed ID: 16923073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Search for functional domain boundaries and localization of functional sites based on oligopeptide vocabularies].
    Solov'ev VV; Makarova KS
    Mol Biol (Mosk); 1992; 26(2):341-53. PubMed ID: 1339954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer analysis and modelling of a consensus sequence of bacterial cytochrome oxidase subunit II.
    Arredondo-Peter R; Helman-Meneguzi F; Hernández F; Escamilla J
    Rev Latinoam Microbiol; 1993; 35(4):423-32. PubMed ID: 8066335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic analysis of the chromate ion transporter (CHR) superfamily.
    Díaz-Pérez C; Cervantes C; Campos-García J; Julián-Sánchez A; Riveros-Rosas H
    FEBS J; 2007 Dec; 274(23):6215-27. PubMed ID: 17986256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum.
    Vizcaíno JA; Cardoza RE; Hauser M; Hermosa R; Rey M; Llobell A; Becker JM; Gutiérrez S; Monte E
    Fungal Genet Biol; 2006 Apr; 43(4):234-46. PubMed ID: 16466953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exopolysaccharide-associated protein sorting in environmental organisms: the PEP-CTERM/EpsH system. Application of a novel phylogenetic profiling heuristic.
    Haft DH; Paulsen IT; Ward N; Selengut JD
    BMC Biol; 2006 Aug; 4():29. PubMed ID: 16930487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bile/arsenite/riboflavin transporter (BART) superfamily.
    Mansour NM; Sawhney M; Tamang DG; Vogl C; Saier MH
    FEBS J; 2007 Feb; 274(3):612-29. PubMed ID: 17288550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.