BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16364610)

  • 1. Spectroscopic and catalytic studies of lipases in ternary hexane-1-propanol-water surfactantless microemulsion systems.
    Zoumpanioti M; Stamatis H; Papadimitriou V; Xenakis A
    Colloids Surf B Biointerfaces; 2006 Jan; 47(1):1-9. PubMed ID: 16364610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatible microemulsions based on limonene: formulation, structure, and applications.
    Papadimitriou V; Pispas S; Syriou S; Pournara A; Zoumpanioti M; Sotiroudis TG; Xenakis A
    Langmuir; 2008 Apr; 24(7):3380-6. PubMed ID: 18303927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Esterification reactions catalyzed by lipases immobilized in organogels: effect of temperature and substrate diffusion.
    Zoumpanioti M; Parmaklis P; de María PD; Stamatis H; Sinisterra JV; Xenakis A
    Biotechnol Lett; 2008 Sep; 30(9):1627-31. PubMed ID: 18427927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reusability of surfactant-coated Candida rugosa lipase immobilized in gelatin microemulsion-based organogels for ethyl isovalerate synthesis.
    Dandavate V; Madamwar D
    J Microbiol Biotechnol; 2008 Apr; 18(4):735-41. PubMed ID: 18467869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure and structural transition in microemulsions stabilized by aldonamide-type surfactants.
    Zielińska K; Wilk KA; Jezierski A; Jesionowski T
    J Colloid Interface Sci; 2008 May; 321(2):408-17. PubMed ID: 18329657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Olive oil microemulsions: enzymatic activities and structural characteristics.
    Papadimitriou V; Sotiroudis TG; Xenakis A
    Langmuir; 2007 Feb; 23(4):2071-7. PubMed ID: 17279697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme catalysis in organic solvents: influence of water content, solvent composition and temperature on Candida rugosa lipase catalyzed transesterification.
    Herbst D; Peper S; Niemeyer B
    J Biotechnol; 2012 Dec; 162(4):398-403. PubMed ID: 22465292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of solvents and precipitant on the properties of chitosan nanoparticles in a water-in-oil microemulsion and its lipase immobilization performance.
    Wu Y; Wang Y; Luo G; Dai Y
    Bioresour Technol; 2010 Feb; 101(3):841-4. PubMed ID: 19773161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic esterification in aqueous miniemulsions.
    Aschenbrenner EM; Weiss CK; Landfester K
    Chemistry; 2009; 15(10):2434-44. PubMed ID: 19156815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real time measurement and control of thermodynamic water activities for enzymatic catalysis in hexane.
    Kang IJ; Pfromm PH; Rezac ME
    J Biotechnol; 2005 Sep; 119(2):147-54. PubMed ID: 15941606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of microemulsions containing orange oil with water and propylene glycol as hydrophilic components.
    Yotsawimonwat S; Okonoki S; Krauel K; Sirithunyalug J; Sirithunyalug B; Rades T
    Pharmazie; 2006 Nov; 61(11):920-6. PubMed ID: 17152984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Esterification of phenolic acids catalyzed by lipases immobilized in organogels.
    Zoumpanioti M; Merianou E; Karandreas T; Stamatis H; Xenakis A
    Biotechnol Lett; 2010 Oct; 32(10):1457-62. PubMed ID: 20490615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatible microemulsions of dicephalic aldonamide-type surfactants: formulation, structure and temperature influence.
    Wilk KA; Zielińska K; Hamerska-Dudra A; Jezierski A
    J Colloid Interface Sci; 2009 Jun; 334(1):87-95. PubMed ID: 19383561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the phase diagram and microstructural transitions in phospholipid microemulsion systems using high-resolution ultrasonic spectroscopy.
    Hickey S; Lawrence MJ; Hagan SA; Buckin V
    Langmuir; 2006 Jun; 22(13):5575-83. PubMed ID: 16768479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature optima of enzyme-catalysed reactions in microemulsion systems.
    Mlejnek K; Seiffert B; Demberg T; Kämper M; Hoppert M
    Appl Microbiol Biotechnol; 2004 May; 64(4):473-80. PubMed ID: 14634797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competition between lipases and monoglycerides at interfaces.
    Reis P; Holmberg K; Miller R; Krägel J; Grigoriev DO; Leser ME; Watzke HJ
    Langmuir; 2008 Jul; 24(14):7400-7. PubMed ID: 18547084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors governing the activity of lyophilised and immobilised lipase preparations in organic solvents.
    Persson M; Wehtje E; Adlercreutz P
    Chembiochem; 2002 Jun; 3(6):566-71. PubMed ID: 12325013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalysis of the hydrolysis of ethyl mandelate and esterification of alpha-bromopropionic acid by lipase in microemulsions.
    Xiao H; Liu J; Li Z
    Chin J Biotechnol; 1993; 9(1):33-9. PubMed ID: 8155837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperactivation of Rhizomucor miehei lipase by hydrophobic xerogels.
    Aucoin MG; Erhardt FA; Legge RL
    Biotechnol Bioeng; 2004 Mar; 85(6):647-55. PubMed ID: 14966806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.