These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part I. Biological and biochemical studies. Kaluzhnaya OV; Belikov SI; Schröder HC; Rothenberger M; Zapf S; Kaandorp JA; Borejko A; Müller IM; Müller WE Naturwissenschaften; 2005 Mar; 92(3):128-33. PubMed ID: 15655662 [TBL] [Abstract][Full Text] [Related]
5. Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae. Mugnaioli E; Natalio F; Schlossmacher U; Wang X; Müller WE; Kolb U Chembiochem; 2009 Mar; 10(4):683-9. PubMed ID: 19184987 [TBL] [Abstract][Full Text] [Related]
6. Bio-sintering processes in hexactinellid sponges: fusion of bio-silica in giant basal spicules from Monorhaphis chuni. Müller WE; Wang X; Burghard Z; Bill J; Krasko A; Boreiko A; Schlossmacher U; Schröder HC; Wiens M J Struct Biol; 2009 Dec; 168(3):548-61. PubMed ID: 19683578 [TBL] [Abstract][Full Text] [Related]
7. Axial growth of hexactinellid spicules: formation of cone-like structural units in the giant basal spicules of the hexactinellid Monorhaphis. Wang X; Boreiko A; Schlossmacher U; Brandt D; Schröder HC; Li J; Kaandorp JA; Götz H; Duschner H; Müller WE J Struct Biol; 2008 Dec; 164(3):270-80. PubMed ID: 18805491 [TBL] [Abstract][Full Text] [Related]
8. Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies. Müller WE; Eckert C; Kropf K; Wang X; Schlossmacher U; Seckert C; Wolf SE; Tremel W; Schröder HC Cell Tissue Res; 2007 Aug; 329(2):363-78. PubMed ID: 17406901 [TBL] [Abstract][Full Text] [Related]
9. Spiculogenesis in the siliceous sponge Lubomirskia baicalensis studied with fluorescent staining. Annenkov VV; Danilovtseva EN J Struct Biol; 2016 Apr; 194(1):29-37. PubMed ID: 26821342 [TBL] [Abstract][Full Text] [Related]
10. Intra-epithelial spicules in a homosclerophorid sponge. Maldonado M; Riesgo A Cell Tissue Res; 2007 Jun; 328(3):639-50. PubMed ID: 17340151 [TBL] [Abstract][Full Text] [Related]
11. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Uriz MJ; Turon X; Becerro MA; Agell G Microsc Res Tech; 2003 Nov; 62(4):279-99. PubMed ID: 14534903 [TBL] [Abstract][Full Text] [Related]
12. Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. Müller WE; Wang X; Kropf K; Ushijima H; Geurtsen W; Eckert C; Tahir MN; Tremel W; Boreiko A; Schlossmacher U; Li J; Schröder HC J Struct Biol; 2008 Feb; 161(2):188-203. PubMed ID: 18054502 [TBL] [Abstract][Full Text] [Related]
13. Formation of siliceous spicules in the marine demosponge Suberites domuncula. Müller WE; Rothenberger M; Boreiko A; Tremel W; Reiber A; Schröder HC Cell Tissue Res; 2005 Aug; 321(2):285-97. PubMed ID: 15947968 [TBL] [Abstract][Full Text] [Related]
14. Sustainable Exploitation and Conservation of the Endemic Lake Baikal Sponge (Lubomirskia baicalensis) for Application in Nanobiotechnology. Müller WE; Schröder HC; Belikov SI Prog Mol Subcell Biol; 2009; 47():383-416. PubMed ID: 19198787 [TBL] [Abstract][Full Text] [Related]
15. Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Müller WE; Boreiko A; Schlossmacher U; Wang X; Tahir MN; Tremel W; Brandt D; Kaandorp JA; Schröder HC Biomaterials; 2007 Oct; 28(30):4501-11. PubMed ID: 17628661 [TBL] [Abstract][Full Text] [Related]
16. Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Wiens M; Belikov SI; Kaluzhnaya OV; Krasko A; Schröder HC; Perovic-Ottstadt S; Müller WE Dev Genes Evol; 2006 May; 216(5):229-42. PubMed ID: 16380844 [TBL] [Abstract][Full Text] [Related]
17. Some aspects of silica deposition in lithistid demosponge desmas. Pisera A Microsc Res Tech; 2003 Nov; 62(4):312-26. PubMed ID: 14534905 [TBL] [Abstract][Full Text] [Related]
18. Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni. Müller WE; Boreiko A; Schlossmacher U; Wang X; Eckert C; Kropf K; Li J; Schröder HC J Exp Biol; 2008 Feb; 211(Pt 3):300-9. PubMed ID: 18203984 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the axial filament in spicules of the demosponge Geodia cydonium: different silicatein composition in microscleres (asters) and megascleres (oxeas and triaenes). Müller WE; Schlossmacher U; Eckert C; Krasko A; Boreiko A; Ushijima H; Wolf SE; Tremel W; Müller IM; Schröder HC Eur J Cell Biol; 2007 Aug; 86(8):473-87. PubMed ID: 17658193 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part II. Molecular biological studies. Kaluzhnaya OV; Belikov SI; Schröder HC; Wiens M; Giovine M; Krasko A; Müller IM; Müller WE Naturwissenschaften; 2005 Mar; 92(3):134-8. PubMed ID: 15668782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]