These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

606 related articles for article (PubMed ID: 16364809)

  • 1. Mechanobiology of bone tissue.
    Klein-Nulend J; Bacabac RG; Mullender MG
    Pathol Biol (Paris); 2005 Dec; 53(10):576-80. PubMed ID: 16364809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of strain and fluid shear stress in stimulating bone cell responses--a computational and experimental study.
    McGarry JG; Klein-Nulend J; Mullender MG; Prendergast PJ
    FASEB J; 2005 Mar; 19(3):482-4. PubMed ID: 15625080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling.
    Tsubota K; Adachi T
    Med Eng Phys; 2005 May; 27(4):305-11. PubMed ID: 15823471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A case for strain-induced fluid flow as a regulator of BMU-coupling and osteonal alignment.
    Smit TH; Burger EH; Huyghe JM
    J Bone Miner Res; 2002 Nov; 17(11):2021-9. PubMed ID: 12412810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress.
    Adachi T; Kameo Y; Hojo M
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2669-82. PubMed ID: 20439268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boning up on Wolff's Law: mechanical regulation of the cells that make and maintain bone.
    Chen JH; Liu C; You L; Simmons CA
    J Biomech; 2010 Jan; 43(1):108-18. PubMed ID: 19818443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue.
    Mullender M; El Haj AJ; Yang Y; van Duin MA; Burger EH; Klein-Nulend J
    Med Biol Eng Comput; 2004 Jan; 42(1):14-21. PubMed ID: 14977218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trabecular architecture can remain intact for both disuse and overload enhanced resorption characteristics.
    Tanck E; Ruimerman R; Huiskes R
    J Biomech; 2006; 39(14):2631-7. PubMed ID: 16214155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microgravity and bone cell mechanosensitivity.
    Klein-Nulend J; Bacabac RG; Veldhuijzen JP; Van Loon JJ
    Adv Space Res; 2003; 32(8):1551-9. PubMed ID: 15000126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of nitric oxide, but not prostaglandin E2, by bone cells depends on fluid flow frequency.
    Mullender MG; Dijcks SJ; Bacabac RG; Semeins CM; Van Loon JJ; Klein-Nulend J
    J Orthop Res; 2006 Jun; 24(6):1170-7. PubMed ID: 16705700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone.
    Huiskes R; Ruimerman R; van Lenthe GH; Janssen JD
    Nature; 2000 Jun; 405(6787):704-6. PubMed ID: 10864330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering.
    Sandino C; Planell JA; Lacroix D
    J Biomech; 2008; 41(5):1005-14. PubMed ID: 18255075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of local strain on cell membrane at initiation point of calcium signaling response to applied mechanical stimulus in osteoblastic cells.
    Sato K; Adachi T; Ueda D; Hojo M; Tomita Y
    J Biomech; 2007; 40(6):1246-55. PubMed ID: 16887125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdamage and bone mechanobiology.
    Lee TC; O'Brien FJ; Gunnlaugsson T; Parkesh R; Taylor D
    Technol Health Care; 2006; 14(4-5):359-65. PubMed ID: 17065757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Describing force-induced bone growth and adaptation by a mathematical model.
    Maldonado S; Findeisen R; Allgöwer F
    J Musculoskelet Neuronal Interact; 2008; 8(1):15-7. PubMed ID: 18398254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis.
    Skerry TM
    Arch Biochem Biophys; 2008 May; 473(2):117-23. PubMed ID: 18334226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the regulation of bone mass by mechanical loading: from quantitative cytochemistry to gene array.
    Skerry TM; Suva LJ
    Cell Biochem Funct; 2003 Sep; 21(3):223-9. PubMed ID: 12910474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide production by bone cells is fluid shear stress rate dependent.
    Bacabac RG; Smit TH; Mullender MG; Dijcks SJ; Van Loon JJ; Klein-Nulend J
    Biochem Biophys Res Commun; 2004 Mar; 315(4):823-9. PubMed ID: 14985086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The aging of Wolff's "law": ontogeny and responses to mechanical loading in cortical bone.
    Pearson OM; Lieberman DE
    Am J Phys Anthropol; 2004; Suppl 39():63-99. PubMed ID: 15605390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells.
    McAllister TN; Du T; Frangos JA
    Biochem Biophys Res Commun; 2000 Apr; 270(2):643-8. PubMed ID: 10753677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.