BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 16364906)

  • 1. Odorant representations are modulated by intra- but not interglomerular presynaptic inhibition of olfactory sensory neurons.
    McGann JP; Pírez N; Gainey MA; Muratore C; Elias AS; Wachowiak M
    Neuron; 2005 Dec; 48(6):1039-53. PubMed ID: 16364906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interglomerular center-surround inhibition shapes odorant-evoked input to the mouse olfactory bulb in vivo.
    Vucinić D; Cohen LB; Kosmidis EK
    J Neurophysiol; 2006 Mar; 95(3):1881-7. PubMed ID: 16319205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors.
    Aroniadou-Anderjaska V; Zhou FM; Priest CA; Ennis M; Shipley MT
    J Neurophysiol; 2000 Sep; 84(3):1194-203. PubMed ID: 10979995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo modulation of sensory input to the olfactory bulb by tonic and activity-dependent presynaptic inhibition of receptor neurons.
    Pírez N; Wachowiak M
    J Neurosci; 2008 Jun; 28(25):6360-71. PubMed ID: 18562606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Interglomerular Circuit Potently Inhibits Olfactory Bulb Output Neurons by Both Direct and Indirect Pathways.
    Liu S; Puche AC; Shipley MT
    J Neurosci; 2016 Sep; 36(37):9604-17. PubMed ID: 27629712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Interglomerular Inhibitory Networks on Olfactory Bulb Odor Representations.
    Zavitz D; Youngstrom IA; Borisyuk A; Wachowiak M
    J Neurosci; 2020 Jul; 40(31):5954-5969. PubMed ID: 32561671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition [corrected] of olfactory receptor neuron input to olfactory bulb glomeruli mediated by suppression of presynaptic calcium influx.
    Wachowiak M; McGann JP; Heyward PM; Shao Z; Puche AC; Shipley MT
    J Neurophysiol; 2005 Oct; 94(4):2700-12. PubMed ID: 15917320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of postsynaptic GABAB receptors modulates the bursting pattern and synaptic activity of olfactory bulb juxtaglomerular neurons.
    Karpuk N; Hayar A
    J Neurophysiol; 2008 Jan; 99(1):308-19. PubMed ID: 18032562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb.
    Ma J; Lowe G
    Neuroscience; 2007 Feb; 144(3):1094-108. PubMed ID: 17156930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adrenergic enhancement of inhibitory transmission in the accessory olfactory bulb.
    Araneda RC; Firestein S
    J Neurosci; 2006 Mar; 26(12):3292-8. PubMed ID: 16554479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells.
    Laaris N; Puche A; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):296-306. PubMed ID: 17035366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral presynaptic inhibition mediates gain control in an olfactory circuit.
    Olsen SR; Wilson RI
    Nature; 2008 Apr; 452(7190):956-60. PubMed ID: 18344978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of functional group position on spatial representations of aliphatic odorants in the rat olfactory bulb.
    Johnson BA; Farahbod H; Saber S; Leon M
    J Comp Neurol; 2005 Mar; 483(2):192-204. PubMed ID: 15678475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serotonergic modulation of odor input to the mammalian olfactory bulb.
    Petzold GC; Hagiwara A; Murthy VN
    Nat Neurosci; 2009 Jun; 12(6):784-91. PubMed ID: 19430472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Odor-induced persistent discharge of mitral cells in the mouse olfactory bulb.
    Matsumoto H; Kashiwadani H; Nagao H; Aiba A; Mori K
    J Neurophysiol; 2009 Apr; 101(4):1890-900. PubMed ID: 19164106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic inhibition of primary olfactory afferents mediated by different mechanisms in lobster and turtle.
    Wachowiak M; Cohen LB
    J Neurosci; 1999 Oct; 19(20):8808-17. PubMed ID: 10516300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Odour-evoked [Ca2+] transients in mitral cell dendrites of frog olfactory glomeruli.
    Delaney K; Davison I; Denk W
    Eur J Neurosci; 2001 May; 13(9):1658-72. PubMed ID: 11359518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging odor coding and synaptic plasticity in the mammalian brain with a genetically-encoded probe.
    McGann JP; Pírez N; Wachowiak M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():664-7. PubMed ID: 17946848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glomerular input patterns in the mouse olfactory bulb evoked by retronasal odor stimuli.
    Furudono Y; Cruz G; Lowe G
    BMC Neurosci; 2013 Apr; 14():45. PubMed ID: 23565900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presynaptic gain control by endogenous cotransmission of dopamine and GABA in the olfactory bulb.
    Vaaga CE; Yorgason JT; Williams JT; Westbrook GL
    J Neurophysiol; 2017 Mar; 117(3):1163-1170. PubMed ID: 28031402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.