BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16365089)

  • 1. Modulations of muscle protein metabolism by branched-chain amino acids in normal and muscle-atrophying rats.
    Kobayashi H; Kato H; Hirabayashi Y; Murakami H; Suzuki H
    J Nutr; 2006 Jan; 136(1 Suppl):234S-6S. PubMed ID: 16365089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The addition of an amylopectin/chromium complex to branched-chain amino acids enhances muscle protein synthesis in rat skeletal muscle.
    Komorowski JR; Ojalvo SP; Sylla S; Tastan H; Orhan C; Tuzcu M; Sahin N; Sahin K
    J Int Soc Sports Nutr; 2020 May; 17(1):26. PubMed ID: 32460884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats.
    Maki T; Yamamoto D; Nakanishi S; Iida K; Iguchi G; Takahashi Y; Kaji H; Chihara K; Okimura Y
    Nutr Res; 2012 Sep; 32(9):676-83. PubMed ID: 23084640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observations of branched-chain amino acid administration in humans.
    Matthews DE
    J Nutr; 2005 Jun; 135(6 Suppl):1580S-4S. PubMed ID: 15930473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality?
    Wolfe RR
    J Int Soc Sports Nutr; 2017; 14():30. PubMed ID: 28852372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans.
    Everman S; Meyer C; Tran L; Hoffman N; Carroll CC; Dedmon WL; Katsanos CS
    Am J Physiol Endocrinol Metab; 2016 Oct; 311(4):E671-E677. PubMed ID: 27530230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein.
    Laeger T; Reed SD; Henagan TM; Fernandez DH; Taghavi M; Addington A; Münzberg H; Martin RJ; Hutson SM; Morrison CD
    Am J Physiol Regul Integr Comp Physiol; 2014 Aug; 307(3):R310-20. PubMed ID: 24898843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Essential Amino Acid Ingestion Facilitates Leucine Retention and Attenuates Myofibrillar Protein Breakdown following Bodyweight Resistance Exercise in Young Adults in a Home-Based Setting.
    Waskiw-Ford M; Hodson N; Fung HJW; West DWD; Apong P; Bashir R; Moore DR
    Nutrients; 2022 Aug; 14(17):. PubMed ID: 36079790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of infused branched-chain amino acids on muscle and whole-body amino acid metabolism in man.
    Louard RJ; Barrett EJ; Gelfand RA
    Clin Sci (Lond); 1990 Nov; 79(5):457-66. PubMed ID: 2174312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of branched-chain amino acid supplementation during unloading on regulatory components of protein synthesis in atrophied soleus muscles.
    Bajotto G; Sato Y; Kitaura Y; Shimomura Y
    Eur J Appl Physiol; 2011 Aug; 111(8):1815-28. PubMed ID: 21222129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of branched-chain amino acids on muscles under hyperammonemic conditions.
    Holeček M; Vodeničarovová M
    J Physiol Biochem; 2018 Nov; 74(4):523-530. PubMed ID: 30058052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infusion of the branched chain amino acids in postoperative patients. Anticatabolic properties.
    Freund H; Hoover HC; Atamian S; Fischer JE
    Ann Surg; 1979 Jul; 190(1):18-23. PubMed ID: 464673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of enrichment of infusion solutions with branched chain amino acids in parenteral nutrition of rats.
    Kikuchi T; Fukudome S; Ikemoto H; Tsutsui I; Tanaka H; Kokuba Y; Orita Y; Chiku K; Natori Y
    J Nutr Sci Vitaminol (Tokyo); 1987 Feb; 33(1):63-73. PubMed ID: 3112336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effects of Branched-Chain Amino Acids on the Akt/mTOR Pathway and Nebulin Protein in Joint Fixation-Induced Muscle Atrophy.
    Nishikawa A; Nishikawa A; Kamajiri N; Okada K; Imagita H
    J Nutr Sci Vitaminol (Tokyo); 2022; 68(2):112-119. PubMed ID: 35491200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of branched-chain-enriched amino acids and insulin on forearm leucine kinetics.
    Zanetti M; Barazzoni R; Kiwanuka E; Tessari P
    Clin Sci (Lond); 1999 Oct; 97(4):437-48. PubMed ID: 10491344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein redistribution from skeletal muscle to splanchnic tissue on fasting and refeeding in young and older healthy individuals.
    Moreau K; Walrand S; Boirie Y
    J Am Med Dir Assoc; 2013 Sep; 14(9):696-704. PubMed ID: 24011660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats.
    Nishida H; Ikegami A; Kaneko C; Kakuma H; Nishi H; Tanaka N; Aoyama M; Usami M; Okimura Y
    PLoS One; 2015; 10(6):e0128805. PubMed ID: 26086773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of skeletal muscle protein synthesis by amino acids and insulin during sepsis.
    Jurasinski C; Gray K; Vary TC
    Metabolism; 1995 Sep; 44(9):1130-8. PubMed ID: 7545262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutraceutical effects of branched-chain amino acids on skeletal muscle.
    Shimomura Y; Yamamoto Y; Bajotto G; Sato J; Murakami T; Shimomura N; Kobayashi H; Mawatari K
    J Nutr; 2006 Feb; 136(2):529S-532S. PubMed ID: 16424141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.