These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 16366284)
1. Production of L-ribulose by dehydrogenation of ribitol with Gluconobacter oxydans. De Muynck C; Pereira C; Soetaert W; Vandamme E Commun Agric Appl Biol Sci; 2005; 70(2):101-4. PubMed ID: 16366284 [No Abstract] [Full Text] [Related]
2. Dehydrogenation of ribitol with Gluconobacter oxydans: production and stability of L-ribulose. De Muynck C; Pereira C; Soetaert W; Vandamme E J Biotechnol; 2006 Sep; 125(3):408-15. PubMed ID: 16650498 [TBL] [Abstract][Full Text] [Related]
3. Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for L-ribulose production. Kylmä AK; Granström T; Leisola M Appl Microbiol Biotechnol; 2004 Feb; 63(5):584-91. PubMed ID: 12898066 [TBL] [Abstract][Full Text] [Related]
4. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Gätgens C; Degner U; Bringer-Meyer S; Herrmann U Appl Microbiol Biotechnol; 2007 Sep; 76(3):553-9. PubMed ID: 17497148 [TBL] [Abstract][Full Text] [Related]
5. SdhE-dependent formation of a functional Acetobacter pasteurianus succinate dehydrogenase in Gluconobacter oxydans--a first step toward a complete tricarboxylic acid cycle. Kiefler I; Bringer S; Bott M Appl Microbiol Biotechnol; 2015 Nov; 99(21):9147-60. PubMed ID: 26399411 [TBL] [Abstract][Full Text] [Related]
6. Glucose oxidation by Gluconobacter oxydans: characterization in shaking-flasks, scale-up and optimization of the pH profile. Silberbach M; Maier B; Zimmermann M; Büchs J Appl Microbiol Biotechnol; 2003 Jul; 62(1):92-8. PubMed ID: 12835926 [TBL] [Abstract][Full Text] [Related]
8. L-Erythrulose production with a multideletion strain of Gluconobacter oxydans. Burger C; Kessler C; Gruber S; Ehrenreich A; Liebl W; Weuster-Botz D Appl Microbiol Biotechnol; 2019 Jun; 103(11):4393-4404. PubMed ID: 31001743 [TBL] [Abstract][Full Text] [Related]
9. Application of molecular methods for analysing the distribution and diversity of acetic acid bacteria in Chilean vineyards. Prieto C; Jara C; Mas A; Romero J Int J Food Microbiol; 2007 Apr; 115(3):348-55. PubMed ID: 17289199 [TBL] [Abstract][Full Text] [Related]
10. [Efficiency of glucose utilization by Gluconobacter oxydans]. Uspenskaia SN; Loĭtsianskaia MS Mikrobiologiia; 1979; 48(3):400-5. PubMed ID: 470626 [TBL] [Abstract][Full Text] [Related]
11. [Production of vitamin C precursor--2-keto-L-gulonic acid from D-sorbitol by mixed culture of microorganisms]. Yin G; Lin W; Qiao C; Ye Q Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):709-15. PubMed ID: 12552828 [TBL] [Abstract][Full Text] [Related]
12. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343. Herrmann U; Merfort M; Jeude M; Bringer-Meyer S; Sahm H Appl Microbiol Biotechnol; 2004 Mar; 64(1):86-90. PubMed ID: 14564486 [TBL] [Abstract][Full Text] [Related]
13. Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor. Hu ZC; Zheng YG; Shen YC Bioresour Technol; 2011 Jul; 102(14):7177-82. PubMed ID: 21592784 [TBL] [Abstract][Full Text] [Related]
14. Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone. Wei S; Song Q; Wei D Prep Biochem Biotechnol; 2007; 37(2):113-21. PubMed ID: 17454822 [TBL] [Abstract][Full Text] [Related]
15. [Use of NMR spectroscopy in studies of sorbitol and glucose transformation by Gluconobacter oxydans]. Kitova aE; Reshetilov AN; Kutyshenko VP; Kutyshenko AV Biofizika; 2006; 51(2):306-9. PubMed ID: 16637338 [TBL] [Abstract][Full Text] [Related]
16. Production of 1,3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112. Hu ZC; Liu ZQ; Zheng YG; Shen YC J Microbiol Biotechnol; 2010 Feb; 20(2):340-5. PubMed ID: 20208438 [TBL] [Abstract][Full Text] [Related]
17. The biochemical preparation of D-xylulose and L-ribulose. Details of the action of Acetobacter suboxydans on D-arabitol, ribitol and other polyhydroxy compounds. MOSES V; FERRIER RJ Biochem J; 1962 Apr; 83(1):8-14. PubMed ID: 14476469 [No Abstract] [Full Text] [Related]
18. A model system for increasing the intensity of whole-cell biocatalysis: investigation of the rate of oxidation of D-sorbitol to L-sorbose by thin bi-layer latex coatings of non-growing Gluconobacter oxydans. Fidaleo M; Charaniya S; Solheid C; Diel U; Laudon M; Ge H; Scriven LE; Flickinger MC Biotechnol Bioeng; 2006 Oct; 95(3):446-58. PubMed ID: 16804947 [TBL] [Abstract][Full Text] [Related]
19. Biotransformation of patulin by Gluconobacter oxydans. Ricelli A; Baruzzi F; Solfrizzo M; Morea M; Fanizzi FP Appl Environ Microbiol; 2007 Feb; 73(3):785-92. PubMed ID: 17114325 [TBL] [Abstract][Full Text] [Related]
20. Comparative studies on substrate specificity of succinic semialdehyde reductase from Gluconobacter oxydans and glyoxylate reductase from Acetobacter aceti. Majumder TR; Inoue M; Aono R; Ochi A; Mihara H Biosci Biotechnol Biochem; 2024 Aug; 88(9):1069-1072. PubMed ID: 38871868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]