These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16366305)

  • 1. Phytoextraction of Cd and Zn with Salix dasyclados Loden.
    Meers E; Tack FM; Ruttens A; Vandecasteele B; Vangonsveld J; Verloo MG
    Commun Agric Appl Biol Sci; 2005; 70(2):189-90. PubMed ID: 16366305
    [No Abstract]   [Full Text] [Related]  

  • 2. Field trial setup for heavy metal removal from dredged sediments using intensive cultures of the willow Salix viminalis.
    Meers E; Vervaeke P; Tack FM; Lust N; Verloo MG
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(4):141-6. PubMed ID: 15954279
    [No Abstract]   [Full Text] [Related]  

  • 3. Impact of dewatering and afforestation of contaminated dredged sediment on metal fractionation and mobility.
    Vervaeke P; Meers E; Tack FM; Lust N; Verloo MG
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(4):135-9. PubMed ID: 15954278
    [No Abstract]   [Full Text] [Related]  

  • 4. Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail.
    Dickinson NM; Pulford ID
    Environ Int; 2005 May; 31(4):609-13. PubMed ID: 15788201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars.
    Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW
    Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of [S, S]-EDDS on phytoextraction of copper and zinc by Elsholtzia splendens from metal-contaminated soil.
    Wu LH; Sun XF; Luo YM; Xing XR; Christie P
    Int J Phytoremediation; 2007; 9(3):227-41. PubMed ID: 18246770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential of willow for remediation of heavy metal polluted calcareous urban soils.
    Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK
    Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of willow stands on heavy metal concentrations and top soil properties of infrastructure spoil landfills and dredged sediment-derived sites.
    Vandecasteele B; Quataert P; Genouw G; Lettens S; Tack FM
    Sci Total Environ; 2009 Oct; 407(20):5289-97. PubMed ID: 19619889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Elsholtzia splendens, soil amendments, and soil managements on Cu, Pb, Zn and Cd fractionation and solubilization in soil under field conditions.
    Peng HY; Yang XE
    Bull Environ Contam Toxicol; 2007 May; 78(5):384-9. PubMed ID: 17618382
    [No Abstract]   [Full Text] [Related]  

  • 10. Phytoextraction of risk elements by willow and poplar trees.
    Kacálková L; Tlustoš P; Száková J
    Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of phytoextraction on heavy metal concentrations and pH of pore-water of biosolids determined using an in situ sampling technique.
    Huynh TT; Laidlaw WS; Singh B; Gregory D; Baker AJ
    Environ Pollut; 2008 Dec; 156(3):874-82. PubMed ID: 18586368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The solid-solution partitioning of heavy metals (Cd and Zn) in soil and dredged sediments for environmental management purposes.
    Unamuno VI; Meers E; Tack FM
    Commun Agric Appl Biol Sci; 2006; 71(1):245-7. PubMed ID: 17191515
    [No Abstract]   [Full Text] [Related]  

  • 13. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens--a field case.
    Wang FY; Lin XG; Yin R
    Environ Pollut; 2007 May; 147(1):248-55. PubMed ID: 17011687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal accumulation in trees growing on contaminated sites in Central Europe.
    Unterbrunner R; Puschenreiter M; Sommer P; Wieshammer G; Tlustos P; Zupan M; Wenzel WW
    Environ Pollut; 2007 Jul; 148(1):107-14. PubMed ID: 17224228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ASSOCIATED BACTERIA INCREASE THE PHYTOEXTRACTION OF CADMIUM AND ZINC FROM A METAL-CONTAMINATED SOIL BY MYCORRHIZAL WILLOWS.
    Zimmer D; Baum C; Leinweber P; Hrynkiewicz K; Meissner R
    Int J Phytoremediation; 2009 Feb; 11(2):200-213. PubMed ID: 28134000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Woody biomass phytoremediation of contaminated brownfield land.
    French CJ; Dickinson NM; Putwain PD
    Environ Pollut; 2006 Jun; 141(3):387-95. PubMed ID: 16271426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metals in a constructed wetland treating industrial wastewater: distribution in the sediment and rhizome tissue.
    Domingos S; Dallas S; Germain M; Ho G
    Water Sci Technol; 2009; 60(6):1425-32. PubMed ID: 19759445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments.
    Duquène L; Vandenhove H; Tack F; Meers E; Baeten J; Wannijn J
    Sci Total Environ; 2009 Feb; 407(5):1496-505. PubMed ID: 19054545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tree species effect on the redistribution of soil metals.
    Mertens J; Van Nevel L; De Schrijver A; Piesschaert F; Oosterbaan A; Tack FM; Verheyen K
    Environ Pollut; 2007 Sep; 149(2):173-81. PubMed ID: 17360090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomass growth variation and phytoextraction potential of four
    Salam MMA; Mohsin M; Kaipiainen E; Villa A; Kuittinen S; Pulkkinen P; Pelkonen P; Pappinen A
    Int J Phytoremediation; 2019; 21(13):1329-1340. PubMed ID: 31274011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.