BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16366337)

  • 1. Core-shell microspheres by dispersion polymerization as promising delivery systems for proteins.
    Sparnacci K; Laus M; Tondelli L; Bernardi C; Magnani L; Corticelli F; Marchisio M; Ensoli B; Castaldello A; Caputo A
    J Biomater Sci Polym Ed; 2005; 16(12):1557-74. PubMed ID: 16366337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of innovative protein-coated poly(methylmethacrylate) core-shell nanoparticles for vaccine purposes.
    Voltan R; Castaldello A; Brocca-Cofano E; Altavilla G; Caputo A; Laus M; Sparnacci K; Ensoli B; Spaccasassi S; Ballestri M; Tondelli L
    Pharm Res; 2007 Oct; 24(10):1870-82. PubMed ID: 17476465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of poly(glycidyl methacrylate-divinylbenzene) porous microspheres with polyethylene glycol and their adsorption property of protein.
    Wang R; Zhang Y; Ma G; Su Z
    Colloids Surf B Biointerfaces; 2006 Aug; 51(1):93-9. PubMed ID: 16824738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Preparation method of polystyrene core-poly (acrylamide-acrylic acid) shell fluorescent microspheres].
    Yao WX; Yang B; Li Q; Sun YJ
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2011 Jan; 40(1):44-50. PubMed ID: 21319373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel biocompatible anionic polymeric microspheres for the delivery of the HIV-1 Tat protein for vaccine application.
    Caputo A; Brocca-Cofano E; Castaldello A; De Michele R; Altavilla G; Marchisio M; Gavioli R; Rolen U; Chiarantini L; Cerasi A; Dominici S; Magnani M; Cafaro A; Sparnacci K; Laus M; Tondelli L; Ensoli B
    Vaccine; 2004 Jul; 22(21-22):2910-24. PubMed ID: 15246628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of 5-fluorouracil loaded poly(acrylamide-co-methylmethacrylate) novel core-shell microspheres: in vitro release studies.
    Babu VR; Sairam M; Hosamani KM; Aminabhavi TM
    Int J Pharm; 2006 Nov; 325(1-2):55-62. PubMed ID: 16884868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of dual-functionalized core-shell fluorescent microspheres for bioconjugation and cellular delivery.
    Behrendt JM; Nagel D; Chundoo E; Alexander LM; Dupin D; Hine AV; Bradley M; Sutherland AJ
    PLoS One; 2013; 8(3):e50713. PubMed ID: 23526923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microspheres made of poly(epsilon-caprolactone)-based amphiphilic copolymers: potential in sustained delivery of proteins.
    Quaglia F; Ostacolo L; Nese G; De Rosa G; La Rotonda MI; Palumbo R; Maglio G
    Macromol Biosci; 2005 Oct; 5(10):945-54. PubMed ID: 16208680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of hairy core-shell structured magnetic polymer submicrospheres and their adsorption of bovine serum albumin.
    Yan X; Kong J; Yang C; Fu G
    J Colloid Interface Sci; 2015 May; 445():9-15. PubMed ID: 25594881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of a composite PLGA and poly(acryloyl hydroxyethyl starch) microsphere system for protein delivery.
    Woo BH; Jiang G; Jo YW; DeLuca PP
    Pharm Res; 2001 Nov; 18(11):1600-6. PubMed ID: 11758769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermo-responsive monodisperse core-shell microspheres with PNIPAM core and biocompatible porous ethyl cellulose shell embedded with PNIPAM gates.
    Yu YL; Zhang MJ; Xie R; Ju XJ; Wang JY; Pi SW; Chu LY
    J Colloid Interface Sci; 2012 Jun; 376(1):97-106. PubMed ID: 22480401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced antisense effect of modified PNAs delivered through functional PMMA microspheres.
    Chiarantini L; Cerasi A; Millo E; Sparnacci K; Laus M; Riccio M; Santi S; Ballestri M; Spaccasassi S; Tondelli L
    Int J Pharm; 2006 Oct; 324(1):83-91. PubMed ID: 16926075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-Shell Magnetic Mesoporous Silica Microspheres with Large Mesopores for Enzyme Immobilization in Biocatalysis.
    Zhang Y; Yue Q; Zagho MM; Zhang J; Elzatahry AA; Jiang Y; Deng Y
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10356-10363. PubMed ID: 30789700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic in vivo imaging of dual-triggered microspheres for sustained release applications: synthesis, characterization and cytotoxicity study.
    Efthimiadou EK; Tapeinos C; Chatzipavlidis A; Boukos N; Fragogeorgi E; Palamaris L; Loudos G; Kordas G
    Int J Pharm; 2014 Jan; 461(1-2):54-63. PubMed ID: 24286923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(methyl methacrylate)-grafted chitosan microspheres for controlled release of ampicillin.
    Changerath R; Nair PD; Mathew S; Nair CP
    J Biomed Mater Res B Appl Biomater; 2009 Apr; 89(1):65-76. PubMed ID: 18720417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable yolk-shell microspheres for ultrasound/MR dual-modality imaging and controlled drug delivery.
    Yang P; Luo X; Wang S; Wang F; Tang C; Wang C
    Colloids Surf B Biointerfaces; 2017 Mar; 151():333-343. PubMed ID: 28043050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles.
    Hu Y; Jiang X; Ding Y; Ge H; Yuan Y; Yang C
    Biomaterials; 2002 Aug; 23(15):3193-201. PubMed ID: 12102191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein release from poly(epsilon-caprolactone) microspheres prepared by melt encapsulation and solvent evaporation techniques: a comparative study.
    Jameela SR; Suma N; Jayakrishnan A
    J Biomater Sci Polym Ed; 1997; 8(6):457-66. PubMed ID: 9151193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecule release from monodisperse PLG microspheres: control of release rates and investigation of release mechanism.
    Berkland C; Pollauf E; Raman C; Silverman R; Kim K'; Pack DW
    J Pharm Sci; 2007 May; 96(5):1176-91. PubMed ID: 17455338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changing the pH of the external aqueous phase may modulate protein entrapment and delivery from poly(lactide-co-glycolide) microspheres prepared by a w/o/w solvent evaporation method.
    Leo E; Pecquet S; Rojas J; Couvreur P; Fattal E
    J Microencapsul; 1998; 15(4):421-30. PubMed ID: 9651864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.