BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16366340)

  • 1. Poly(ethylene glycol) hydrogels cross-linked by hydrolyzable polyrotaxane containing hydroxyapatite particles as scaffolds for bone regeneration.
    Fujimoto M; Isobe M; Yamaguchi S; Amagasa T; Watanabe A; Ooya T; Yui N
    J Biomater Sci Polym Ed; 2005; 16(12):1611-21. PubMed ID: 16366340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of porous hydrolyzable polyrotaxane hydrogels and their erosion behavior.
    Ichi T; Nitta K; Lee WK; Ooya T; Yui N
    J Biomater Sci Polym Ed; 2003; 14(6):567-79. PubMed ID: 12901438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering.
    Lee WK; Ichi T; Ooya T; Yamamoto T; Katoh M; Yui N
    J Biomed Mater Res A; 2003 Dec; 67(4):1087-92. PubMed ID: 14624493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel biodegradable cholesterol-modified polyrotaxane hydrogels for cartilage regeneration.
    Tachaboonyakiat W; Furubayashi T; Katoh M; Ooya T; Yui N
    J Biomater Sci Polym Ed; 2004; 15(11):1389-404. PubMed ID: 15648570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of poly(ethylene glycol) hydrogels cross-linked by hydrolyzable polyrotaxane.
    Watanabe J; Ooya T; Park KD; Kim YH; Yui N
    J Biomater Sci Polym Ed; 2000; 11(12):1333-45. PubMed ID: 11261875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Polyrotaxane Particles via Template Assembly.
    Tardy BL; Tan S; Dam HH; Suma T; Guo J; Qiao GG; Caruso F
    Biomacromolecules; 2017 Jul; 18(7):2118-2127. PubMed ID: 28617594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with Arg-Gly-Asp peptides and a poly(ethyleneglycol) spacer.
    Shin H; Jo S; Mikos AG
    J Biomed Mater Res; 2002 Aug; 61(2):169-79. PubMed ID: 12061329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibroblast adhesion and proliferation on poly(ethylene glycol) hydrogels crosslinked by hydrolyzable polyrotaxane.
    Watanabe J; Ooya T; Nitta KH; Park KD; Kim YH; Yui N
    Biomaterials; 2002 Oct; 23(20):4041-8. PubMed ID: 12182305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable erosion time and profile in poly(ethylene glycol) hydrogels by supramolecular structure of hydrolyzable polyrotaxane.
    Ichi T; Watanabe J; Ooya T; Yui N
    Biomacromolecules; 2001; 2(1):204-10. PubMed ID: 11749174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced ALP activity of MG63 cells cultured on hydroxyapatite-poly(ethylene glycol) hydrogel composites prepared using EDTA-OH.
    Ito T; Sasaki M; Taguchi T
    Biomed Mater; 2015 Mar; 10(1):015025. PubMed ID: 25730608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration.
    Ma X; He Z; Han F; Zhong Z; Chen L; Li B
    Colloids Surf B Biointerfaces; 2016 Jul; 143():81-87. PubMed ID: 26998869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide.
    Behravesh E; Zygourakis K; Mikos AG
    J Biomed Mater Res A; 2003 May; 65(2):260-70. PubMed ID: 12734821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction.
    An SH; Matsumoto T; Miyajima H; Nakahira A; Kim KH; Imazato S
    Dent Mater; 2012 Dec; 28(12):1221-31. PubMed ID: 23018082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro.
    Temenoff JS; Park H; Jabbari E; Conway DE; Sheffield TL; Ambrose CG; Mikos AG
    Biomacromolecules; 2004; 5(1):5-10. PubMed ID: 14715001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolytically degradable polyrotaxane hydrogels for drug and cell delivery applications.
    Pradal C; Grøndahl L; Cooper-White JJ
    Biomacromolecules; 2015 Jan; 16(1):389-403. PubMed ID: 25469767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-crosslinked alginate nano-hydroxyapatite paste for bone tissue engineering.
    Maji K; Dasgupta S; Bhaskar R; Gupta MK
    Biomed Mater; 2020 Aug; 15(5):055019. PubMed ID: 32438363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local and network structure of thermoreversible polyrotaxane hydrogels based on poly(ethylene glycol) and methylated alpha-cyclodextrins.
    Kataoka T; Kidowaki M; Zhao C; Minamikawa H; Shimizu T; Ito K
    J Phys Chem B; 2006 Dec; 110(48):24377-83. PubMed ID: 17134190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platelet responses to dynamic biomaterial surfaces with different poly(ethylene glycol) and polyrotaxane molecular architectures constructed on gold substrates.
    Kakinoki S; Yui N; Yamaoka T
    J Biomater Appl; 2013 Nov; 28(4):544-51. PubMed ID: 23048065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences.
    Vozzi G; Corallo C; Carta S; Fortina M; Gattazzo F; Galletti M; Giordano N
    J Biomed Mater Res A; 2014 May; 102(5):1415-21. PubMed ID: 23775901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.