These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 16366489)

  • 41. Production, characterization, and flocculation mechanism of cation independent, pH tolerant, and thermally stable bioflocculant from Enterobacter sp. ETH-2.
    Tang W; Song L; Li D; Qiao J; Zhao T; Zhao H
    PLoS One; 2014; 9(12):e114591. PubMed ID: 25485629
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biosurfactant production using molasses and whey under thermophilic conditions.
    Joshi S; Bharucha C; Jha S; Yadav S; Nerurkar A; Desai AJ
    Bioresour Technol; 2008 Jan; 99(1):195-9. PubMed ID: 17321739
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of a bioflocculant from a newly isolated Vagococcus sp. W31.
    Gao J; Bao HY; Xin MX; Liu YX; Li Q; Zhang YF
    J Zhejiang Univ Sci B; 2006 Mar; 7(3):186-92. PubMed ID: 16502504
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioflocculants' production from a cellulase-free xylanase-producing Pseudomonas boreopolis G22 by degrading biomass and its application in cost-effective harvest of microalgae.
    Guo H; Hong C; Zhang C; Zheng B; Jiang D; Qin W
    Bioresour Technol; 2018 May; 255():171-179. PubMed ID: 29414164
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production of a bioflocculant from Pseudomonas veronii L918 using the hydrolyzate of peanut hull and its application in the treatment of ash-flushing wastewater generated from coal fired power plant.
    Liu W; Hao Y; Jiang J; Zhu A; Zhu J; Dong Z
    Bioresour Technol; 2016 Oct; 218():318-25. PubMed ID: 27372012
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A bioflocculant-supported dissolved air flotation system for the removal of suspended solids, lipids and protein matter from poultry slaughterhouse wastewater.
    Dlangamandla C; Ntwampe SKO; Basitere M
    Water Sci Technol; 2018 Aug; 78(1-2):452-458. PubMed ID: 30101780
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production and characterization of bioflocculant produced by Halobacillus sp. Mvuyo isolated from bottom sediment of Algoa Bay.
    Cosa S; Mabinya LV; Olaniran AO; Okoh AI
    Environ Technol; 2012; 33(7-9):967-73. PubMed ID: 22720422
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study on the flocculability of the Arthrobacter sp., an actinomycete resuscitated from the VBNC state.
    Su X; Shen X; Ding L; Yokota A
    World J Microbiol Biotechnol; 2012 Jan; 28(1):91-7. PubMed ID: 22806783
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Organic carbon effect on nitrifying bacteria in a mixed culture.
    Racz L; Datta T; Goel RK
    Water Sci Technol; 2010; 61(11):2951-6. PubMed ID: 20489269
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increased biological hydrogen production with reduced organic loading.
    Van Ginkel SW; Logan B
    Water Res; 2005 Oct; 39(16):3819-26. PubMed ID: 16129472
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification and production of bioflocculants by Enterobacter sp. and Bacillus sp. and their characterization studies.
    Muthulakshmi L; Nellaiah H; Kathiresan T; Rajini N; Christopher F
    Prep Biochem Biotechnol; 2017 May; 47(5):458-467. PubMed ID: 28278109
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent advances in extracellular biopolymer flocculants.
    Salehizadeh H; Yan N
    Biotechnol Adv; 2014 Dec; 32(8):1506-22. PubMed ID: 25316671
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Betaine removal during thermo- and mesophilic aerobic batch biodegradation of beet molasses vinasse: influence of temperature and pH on the progress and efficiency of the process.
    Cibis E; Ryznar-Luty A; Krzywonos M; Lutosławski K; Miśkiewicz T
    J Environ Manage; 2011 Jul; 92(7):1733-9. PubMed ID: 21367516
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characteristics and culture conditions of a bioflocculant produced by Penicillium sp.
    Liu LF; Cheng W
    Biomed Environ Sci; 2010 Jun; 23(3):213-8. PubMed ID: 20708501
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flocculation properties of a bioflocculant produced by Bacillus licheniformis.
    Ji B; Zhang XY; Li Z; Xie HQ; Xiao XM; Fan GJ
    Water Sci Technol; 2010; 62(8):1907-13. PubMed ID: 20962407
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bacillus mojavensis strain 32A, a bioflocculant-producing bacterium isolated from an Egyptian salt production pond.
    Elkady MF; Farag S; Zaki S; Abu-Elreesh G; Abd-El-Haleem D
    Bioresour Technol; 2011 Sep; 102(17):8143-51. PubMed ID: 21689928
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Influence of different sources of carbon and nitrogen on the biosynthesis of proteolytic complexes by Bacillus circulans 693, Bacillus sp. 27 and Yarrowia lipolytica 2061 strains].
    Shubchyns'ka AS; Matseliukh OV; Varbanets' LD
    Ukr Biokhim Zh (1999); 2008; 80(3):131-9. PubMed ID: 18959038
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation and characterization of temperature and alkaline stable bioflocculant from Agrobacterium sp. M-503.
    Li Q; Liu HL; Qi QS; Wang FS; Zhang YZ
    N Biotechnol; 2010 Dec; 27(6):789-94. PubMed ID: 20849992
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioflocculation potentials of a uronic acid-containing glycoprotein produced by Bacillus sp. AEMREG4 isolated from Tyhume River, South Africa.
    Ntsangani N; Okaiyeto K; Uchechukwu NU; Olaniran AO; Mabinya LV; Okoh AI
    3 Biotech; 2017 May; 7(1):78. PubMed ID: 28500400
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources.
    Xu K; Xu P
    Bioresour Technol; 2014 Feb; 153():23-9. PubMed ID: 24333698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.