These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Structure-function correlations in tyrosinases. Kanteev M; Goldfeder M; Fishman A Protein Sci; 2015 Sep; 24(9):1360-9. PubMed ID: 26104241 [TBL] [Abstract][Full Text] [Related]
26. Inulavosin and its benzo-derivatives, melanogenesis inhibitors, target the copper loading mechanism to the active site of tyrosinase. Fujita H; Menezes JC; Santos SM; Yokota S; Kamat SP; Cavaleiro JA; Motokawa T; Kato T; Mochizuki M; Fujiwara T; Fujii Y; Tanaka Y Pigment Cell Melanoma Res; 2014 May; 27(3):376-86. PubMed ID: 24479607 [TBL] [Abstract][Full Text] [Related]
27. Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. Halaouli S; Asther M; Sigoillot JC; Hamdi M; Lomascolo A J Appl Microbiol; 2006 Feb; 100(2):219-32. PubMed ID: 16430498 [TBL] [Abstract][Full Text] [Related]
28. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Decker H; Tuczek F Trends Biochem Sci; 2000 Aug; 25(8):392-7. PubMed ID: 10916160 [TBL] [Abstract][Full Text] [Related]
29. An approximate analytical solution to the lag period of monophenolase activity of tyrosinase. Molina FG; Muñoz JL; Varón R; López JN; Cánovas FG; Tudela J Int J Biochem Cell Biol; 2007; 39(1):238-52. PubMed ID: 17010655 [TBL] [Abstract][Full Text] [Related]
30. Paramagnetic properties of the halide-bound derivatives of oxidised tyrosinase investigated by 1H NMR spectroscopy. Tepper AW; Bubacco L; Canters GW Chemistry; 2006 Oct; 12(29):7668-75. PubMed ID: 16927257 [TBL] [Abstract][Full Text] [Related]
31. A Novel Tyrosinase from Li T; Zhang N; Yan S; Jiang S; Yin H Appl Environ Microbiol; 2021 May; 87(12):e0027521. PubMed ID: 33741625 [TBL] [Abstract][Full Text] [Related]
32. Mechanism of O2 activation by cytochrome P450cam studied by isotope effects and transient state kinetics. Purdy MM; Koo LS; de Montellano PR; Klinman JP Biochemistry; 2006 Dec; 45(51):15793-806. PubMed ID: 17176102 [TBL] [Abstract][Full Text] [Related]
33. Michaelis constants of mushroom tyrosinase with respect to oxygen in the presence of monophenols and diphenols. Fenoll LG; Rodríguez-López JN; García-Molina F; García-Cánovas F; Tudela J Int J Biochem Cell Biol; 2002 Apr; 34(4):332-6. PubMed ID: 11854032 [TBL] [Abstract][Full Text] [Related]
34. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference. Solem E; Tuczek F; Decker H Angew Chem Int Ed Engl; 2016 Feb; 55(8):2884-8. PubMed ID: 26773413 [TBL] [Abstract][Full Text] [Related]
35. New tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates. Kim YJ; Chung JE; Kurisawa M; Uyama H; Kobayashi S Biomacromolecules; 2004; 5(2):474-9. PubMed ID: 15003008 [TBL] [Abstract][Full Text] [Related]
36. A tyrosinase, mTyr-CNK, that is functionally available as a monophenol monooxygenase. Do H; Kang E; Yang B; Cha HJ; Choi YS Sci Rep; 2017 Dec; 7(1):17267. PubMed ID: 29222480 [TBL] [Abstract][Full Text] [Related]
37. Investigation of binding-site homology between mushroom and bacterial tyrosinases by using aurones as effectors. Haudecoeur R; Gouron A; Dubois C; Jamet H; Lightbody M; Hardré R; Milet A; Bergantino E; Bubacco L; Belle C; Réglier M; Boumendjel A Chembiochem; 2014 Jun; 15(9):1325-33. PubMed ID: 24849818 [TBL] [Abstract][Full Text] [Related]
38. Mechanistic implications of variable stoichiometries of oxygen consumption during tyrosinase catalyzed oxidation of monophenols and o-diphenols. Peñalver MJ; Hiner AN; Rodríguez-López JN; García-Cánovas F; Tudela J Biochim Biophys Acta; 2002 May; 1597(1):140-8. PubMed ID: 12009413 [TBL] [Abstract][Full Text] [Related]
39. A review on spectrophotometric methods for measuring the monophenolase and diphenolase activities of tyrosinase. García-Molina F; Muñoz JL; Varón R; Rodríguez-López JN; García-Cánovas F; Tudela J J Agric Food Chem; 2007 Nov; 55(24):9739-49. PubMed ID: 17958393 [TBL] [Abstract][Full Text] [Related]
40. Structural basis and mechanism of the inhibition of the type-3 copper protein tyrosinase from Streptomyces antibioticus by halide ions. Tepper AW; Bubacco L; Canters GW J Biol Chem; 2002 Aug; 277(34):30436-44. PubMed ID: 12048185 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]