These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 16366530)

  • 1. Guest-dependent negative thermal expansion in nanoporous prussian blue analogues M(II)Pt(IV)(CN)6.x{H2O} (0 < or = x < or = 2; M = Zn, Cd).
    Goodwin AL; Chapman KW; Kepert CJ
    J Am Chem Soc; 2005 Dec; 127(51):17980-1. PubMed ID: 16366530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compositional dependence of negative thermal expansion in the Prussian Blue analogues M(II)Pt(IV)(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd).
    Chapman KW; Chupas PJ; Kepert CJ
    J Am Chem Soc; 2006 May; 128(21):7009-14. PubMed ID: 16719481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal expansion matching via framework flexibility in zinc dicyanometallates.
    Goodwin AL; Kennedy BJ; Kepert CJ
    J Am Chem Soc; 2009 May; 131(18):6334-5. PubMed ID: 19385622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Argentophilicity-dependent colossal thermal expansion in extended prussian blue analogues.
    Goodwin AL; Keen DA; Tucker MG; Dove MT; Peters L; Evans JS
    J Am Chem Soc; 2008 Jul; 130(30):9660-1. PubMed ID: 18597466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2: an atomic pair distribution function analysis.
    Chapman KW; Chupas PJ; Kepert CJ
    J Am Chem Soc; 2005 Nov; 127(44):15630-6. PubMed ID: 16262430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching Between Giant Positive and Negative Thermal Expansions of a YFe(CN)
    Gao Q; Chen J; Sun Q; Chang D; Huang Q; Wu H; Sanson A; Milazzo R; Zhu H; Li Q; Liu Z; Deng J; Xing X
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9023-9028. PubMed ID: 28594118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zero thermal expansion in a flexible, stable framework: tetramethylammonium copper(I) zinc(II) cyanide.
    Phillips AE; Halder GJ; Chapman KW; Goodwin AL; Kepert CJ
    J Am Chem Soc; 2010 Jan; 132(1):10-1. PubMed ID: 20014833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure, bonding and phonon modes in the negative thermal expansion materials of Cd(CN)(2) and Zn(CN)(2).
    Ding P; Liang EJ; Jia Y; Du ZY
    J Phys Condens Matter; 2008 Jul; 20(27):275224. PubMed ID: 21694385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Thermal Expansion from Negative, Zero, to Positive in Cubic Prussian Blue Analogues of GaFe(CN)
    Gao Q; Shi N; Sanson A; Sun Y; Milazzo R; Olivi L; Zhu H; Lapidus SH; Zheng L; Chen J; Xing X
    Inorg Chem; 2018 Nov; 57(22):14027-14030. PubMed ID: 30376304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dehydration of the nanoporous coordination framework ErIII[CoIII(CN)6].4(H2O): single crystal to single crystal transformation and negative thermal expansion in ErIII[CoIII(CN)6].
    Pretsch T; Chapman KW; Halder GJ; Kepert CJ
    Chem Commun (Camb); 2006 May; (17):1857-9. PubMed ID: 16622507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of metallophilicity on "colossal" positive and negative thermal expansion in a series of isostructural dicyanometallate coordination polymers.
    Korcok JL; Katz MJ; Leznoff DB
    J Am Chem Soc; 2009 Apr; 131(13):4866-71. PubMed ID: 19290631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An X-ray diffraction and MAS NMR study of the thermal expansion properties of calcined siliceous ferrierite.
    Bull I; Lightfoot P; Villaescusa LA; Bull LM; Gover RK; Evans JS; Morris RE
    J Am Chem Soc; 2003 Apr; 125(14):4342-9. PubMed ID: 12670258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal-induced changes in molecular magnets based on prussian blue analogues.
    Martínez-Garcia R; Knobel M; Reguera E
    J Phys Chem B; 2006 Apr; 110(14):7296-303. PubMed ID: 16599501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective recovery of dynamic guest structure in a nanoporous prussian blue through in situ X-ray diffraction: a differential pair distribution function analysis.
    Chapman KW; Chupas PJ; Kepert CJ
    J Am Chem Soc; 2005 Aug; 127(32):11232-3. PubMed ID: 16089438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zero thermal expansion in a Prussian Blue analogue.
    Margadonna S; Prassides K; Fitch AN
    J Am Chem Soc; 2004 Dec; 126(47):15390-1. PubMed ID: 15563160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-dependent guest-driven single-crystal-to-single-crystal ligand exchange in a two-fold interpenetrated Cd(II) grid network.
    Zhuang CF; Zhang J; Wang Q; Chu ZH; Fenske D; Su CY
    Chemistry; 2009 Aug; 15(31):7578-85. PubMed ID: 19579237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible hydrogen gas uptake in nanoporous Prussian Blue analogues.
    Chapman KW; Southon PD; Weeks CL; Kepert CJ
    Chem Commun (Camb); 2005 Jul; (26):3322-4. PubMed ID: 15983661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant negative thermal expansion in magnetic nanocrystals.
    Zheng XG; Kubozono H; Yamada H; Kato K; Ishiwata Y; Xu CN
    Nat Nanotechnol; 2008 Dec; 3(12):724-6. PubMed ID: 19057591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Octahedral niobium chloride clusters as building blocks of templated prussian blue framework analogues.
    Yan B; Zhou H; Lachgar A
    Inorg Chem; 2003 Dec; 42(26):8818-22. PubMed ID: 14686862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ single-crystal X-ray diffraction studies of desorption and sorption in a flexible nanoporous molecular framework material.
    Halder GJ; Kepert CJ
    J Am Chem Soc; 2005 Jun; 127(21):7891-900. PubMed ID: 15913379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.