These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 16366534)
1. Fast carbon-carbon bond formation by a promiscuous lipase. Svedendahl M; Hult K; Berglund P J Am Chem Soc; 2005 Dec; 127(51):17988-9. PubMed ID: 16366534 [TBL] [Abstract][Full Text] [Related]
2. Exploring the active-site of a rationally redesigned lipase for catalysis of Michael-type additions. Carlqvist P; Svedendahl M; Branneby C; Hult K; Brinck T; Berglund P Chembiochem; 2005 Feb; 6(2):331-6. PubMed ID: 15578634 [TBL] [Abstract][Full Text] [Related]
4. Rational engineering of Candida antarctica lipase B for selective monoacylation of diols. Hamberg A; Maurer S; Hult K Chem Commun (Camb); 2012 Oct; 48(80):10013-5. PubMed ID: 22945018 [TBL] [Abstract][Full Text] [Related]
5. Effect of mutations in Candida antarctica B lipase. Patkar S; Vind J; Kelstrup E; Christensen MW; Svendsen A; Borch K; Kirk O Chem Phys Lipids; 1998 Jun; 93(1-2):95-101. PubMed ID: 9720252 [TBL] [Abstract][Full Text] [Related]
6. Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B. Magnusson AO; Rotticci-Mulder JC; Santagostino A; Hult K Chembiochem; 2005 Jun; 6(6):1051-6. PubMed ID: 15883973 [TBL] [Abstract][Full Text] [Related]
7. The 3D model of the lipase/acyltransferase from Candida parapsilosis, a tool for the elucidation of structural determinants in CAL-A lipase superfamily. Subileau M; Jan AH; Nozac'h H; Pérez-Gordo M; Perrier V; Dubreucq E Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1400-11. PubMed ID: 26123263 [TBL] [Abstract][Full Text] [Related]
8. Substrate conformations set the rate of enzymatic acrylation by lipases. Syrén PO; Hult K Chembiochem; 2010 Apr; 11(6):802-10. PubMed ID: 20301160 [TBL] [Abstract][Full Text] [Related]
9. Altering the substrate specificity of Candida rugosa LIP4 by engineering the substrate-binding sites. Lee LC; Chen YT; Yen CC; Chiang TC; Tang SJ; Lee GC; Shaw JF J Agric Food Chem; 2007 Jun; 55(13):5103-8. PubMed ID: 17536826 [TBL] [Abstract][Full Text] [Related]
10. Improved triglyceride transesterification by circular permuted Candida antarctica lipase B. Yu Y; Lutz S Biotechnol Bioeng; 2010 Jan; 105(1):44-50. PubMed ID: 19609971 [TBL] [Abstract][Full Text] [Related]
11. A Semiautomated Structure-Based Method To Predict Substrates of Enzymes via Molecular Docking: A Case Study with Candida antarctica Lipase B. Yao Z; Zhang L; Gao B; Cui D; Wang F; He X; Zhang JZ; Wei D J Chem Inf Model; 2016 Oct; 56(10):1979-1994. PubMed ID: 27529495 [TBL] [Abstract][Full Text] [Related]
12. Direct epoxidation in Candida antarctica lipase B studied by experiment and theory. Svedendahl M; Carlqvist P; Branneby C; Allnér O; Frise A; Hult K; Berglund P; Brinck T Chembiochem; 2008 Oct; 9(15):2443-51. PubMed ID: 18837059 [TBL] [Abstract][Full Text] [Related]
13. Suppression of water as a nucleophile in Candida antarctica lipase B catalysis. Larsen MW; Zielinska DF; Martinelle M; Hidalgo A; Jensen LJ; Bornscheuer UT; Hult K Chembiochem; 2010 Apr; 11(6):796-801. PubMed ID: 20235107 [TBL] [Abstract][Full Text] [Related]
14. A glimpse into the specialization history of the lipases/acyltransferases family of CpLIP2. Jan AH; Dubreucq E; Drone J; Subileau M Biochim Biophys Acta Proteins Proteom; 2017 Sep; 1865(9):1105-1113. PubMed ID: 28627478 [TBL] [Abstract][Full Text] [Related]
15. Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent. Park HJ; Joo JC; Park K; Kim YH; Yoo YJ J Biotechnol; 2013 Feb; 163(3):346-52. PubMed ID: 23178554 [TBL] [Abstract][Full Text] [Related]
16. Mutant lipase-catalyzed kinetic resolution of bulky phenyl alkyl sec-alcohols: a thermodynamic analysis of enantioselectivity. Vallin M; Syrén PO; Hult K Chembiochem; 2010 Feb; 11(3):411-6. PubMed ID: 20049759 [TBL] [Abstract][Full Text] [Related]
17. Influence of delta-functional groups on the enantiorecognition of secondary alcohols by Candida antarctica lipase B. Nyhlén J; Martín-Matute B; Sandström AG; Bocola M; Bäckvall JE Chembiochem; 2008 Aug; 9(12):1968-74. PubMed ID: 18655082 [TBL] [Abstract][Full Text] [Related]
18. An inverse substrate orientation for the regioselective acylation of 3',5'-diaminonucleosides catalyzed by Candida antarctica lipase B? Lavandera I; Fernández S; Magdalena J; Ferrero M; Kazlauskas RJ; Gotor V Chembiochem; 2005 Aug; 6(8):1381-90. PubMed ID: 15977272 [TBL] [Abstract][Full Text] [Related]
19. Amino acid oxidation of Candida antarctica lipase B studied by molecular dynamics simulations and site-directed mutagenesis. Irani M; Törnvall U; Genheden S; Larsen MW; Hatti-Kaul R; Ryde U Biochemistry; 2013 Feb; 52(7):1280-9. PubMed ID: 23331091 [TBL] [Abstract][Full Text] [Related]
20. Site-specific saturation mutagenesis on residues 132 and 450 of Candida rugosa LIP2 enhances catalytic efficiency and alters substrate specificity in various chain lengths of triglycerides and esters. Yen CC; Malmis CC; Lee GC; Lee LC; Shaw JF J Agric Food Chem; 2010 Oct; 58(20):10899-905. PubMed ID: 20873770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]