These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16366549)

  • 1. Synthesis of multiwalled carbon nanotubes through a modified Wolff-Kishner reduction process.
    Wang W; Poudel B; Wang DZ; Ren ZF
    J Am Chem Soc; 2005 Dec; 127(51):18018-9. PubMed ID: 16366549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 1. The CNT-Fe/Co-MgO system.
    Coquay P; Peigney A; De Grave E; Flahaut E; Vandenberghe RE; Laurent C
    J Phys Chem B; 2005 Sep; 109(38):17813-24. PubMed ID: 16853284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes.
    Zhou LP; Ohta K; Kuroda K; Lei N; Matsuishi K; Gao L; Matsumoto T; Nakamura J
    J Phys Chem B; 2005 Mar; 109(10):4439-47. PubMed ID: 16851515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes.
    Steiner SA; Baumann TF; Kong J; Satcher JH; Dresselhaus MS
    Langmuir; 2007 Apr; 23(9):5161-6. PubMed ID: 17381146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth, new growth, and amplification of carbon nanotubes as a function of catalyst composition.
    Crouse CA; Maruyama B; Colorado R; Back T; Barron AR
    J Am Chem Soc; 2008 Jun; 130(25):7946-54. PubMed ID: 18507464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen.
    Karnicka K; Miecznikowski K; Kowalewska B; Skunik M; Opallo M; Rogalski J; Schuhmann W; Kulesza PJ
    Anal Chem; 2008 Oct; 80(19):7643-8. PubMed ID: 18729478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes.
    Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D
    J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of carbon nanotubes using mesoporous Fe-MCM-41 catalysts.
    Ko JR; Ahn WS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3442-5. PubMed ID: 17252785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processable hybrids of ferrocene-containing poly(phenylacetylene)s and carbon nanotubes: fabrication and properties.
    Yuan WZ; Sun JZ; Liu JZ; Dong Y; Li Z; Xu HP; Qin A; Häussler M; Jin JK; Zheng Q; Tang BZ
    J Phys Chem B; 2008 Jul; 112(30):8896-905. PubMed ID: 18593150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes.
    Cruz-Silva E; Cullen DA; Gu L; Romo-Herrera JM; Muñoz-Sandoval E; López-Urías F; Sumpter BG; Meunier V; Charlier JC; Smith DJ; Terrones H; Terrones M
    ACS Nano; 2008 Mar; 2(3):441-8. PubMed ID: 19206568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer crystallization-driven, periodic patterning on carbon nanotubes.
    Li L; Li CY; Ni C
    J Am Chem Soc; 2006 Feb; 128(5):1692-9. PubMed ID: 16448143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous electrochemical dissolution and passivation of iron growth catalysts in carbon nanotubes.
    Lyon JL; Stevenson KJ
    Langmuir; 2007 Oct; 23(22):11311-8. PubMed ID: 17910488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Nanotubes and occupational medicine].
    Borrelli I
    G Ital Med Lav Ergon; 2007; 29(3 Suppl):851-2. PubMed ID: 18409997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticle composite materials.
    Hu X; Wang T; Qu X; Dong S
    J Phys Chem B; 2006 Jan; 110(2):853-7. PubMed ID: 16471615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structure and field emission of multiwalled carbon nanotubes depending on growth temperature.
    Yoon SW; Kim SY; Park J; Park CJ; Lee CJ
    J Phys Chem B; 2005 Nov; 109(43):20403-6. PubMed ID: 16853640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-yield carbon nanorods obtained by a catalytic copyrolysis process.
    Zou G; Lu J; Wang D; Xu L; Qian Y
    Inorg Chem; 2004 Aug; 43(17):5432-5. PubMed ID: 15310224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization, and stability of Fe-MCM-41 for production of carbon nanotubes by acetylene pyrolysis.
    Amama PB; Lim S; Ciuparu D; Yang Y; Pfefferle L; Haller GL
    J Phys Chem B; 2005 Feb; 109(7):2645-56. PubMed ID: 16851270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of high-purity metal-catalyst-free multiwalled carbon nanotubes to avoid potential experimental misinterpretations.
    Jones CP; Jurkschat K; Crossley A; Compton RG; Riehl BL; Banks CE
    Langmuir; 2007 Aug; 23(18):9501-4. PubMed ID: 17655265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 2. The CNT-Fe/Co-MgAl2O4 system.
    Coquay P; Flahaut E; De Grave E; Peigney A; Vandenberghe RE; Laurent C
    J Phys Chem B; 2005 Sep; 109(38):17825-30. PubMed ID: 16853285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.