BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 16366576)

  • 1. Site-selective metal binding by designed alpha-helical peptides.
    Matzapetakis M; Pecoraro VL
    J Am Chem Soc; 2005 Dec; 127(51):18229-33. PubMed ID: 16366576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling and fine tuning the physical properties of two identical metal coordination sites in de novo designed three stranded coiled coil peptides.
    Iranzo O; Chakraborty S; Hemmingsen L; Pecoraro VL
    J Am Chem Soc; 2011 Jan; 133(2):239-51. PubMed ID: 21162521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterochromia in designed metallopeptides: geometry-selective binding of CdII in a de novo peptide.
    Iranzo O; Cabello C; Pecoraro VL
    Angew Chem Int Ed Engl; 2007; 46(35):6688-91. PubMed ID: 17582808
    [No Abstract]   [Full Text] [Related]  

  • 4. Using diastereopeptides to control metal ion coordination in proteins.
    Peacock AF; Hemmingsen L; Pecoraro VL
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16566-71. PubMed ID: 18940928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The correlation of 113Cd NMR and 111mCd PAC spectroscopies provides a powerful approach for the characterization of the structure of Cd(II)-substituted Zn(II) proteins.
    Iranzo O; Jakusch T; Lee KH; Hemmingsen L; Pecoraro VL
    Chemistry; 2009; 15(15):3761-72. PubMed ID: 19229934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of (113)Cd NMR to probe the native metal binding sites in metalloproteins: an overview.
    Armitage IM; Drakenberg T; Reilly B
    Met Ions Life Sci; 2013; 11():117-44. PubMed ID: 23430773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic and metal binding properties of a de novo metalloprotein binding a tetrazinc cluster.
    Chino M; Zhang SQ; Pirro F; Leone L; Maglio O; Lombardi A; DeGrado WF
    Biopolymers; 2018 Aug; 109(10):e23339. PubMed ID: 30203532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Location-Dependent Lanthanide Selectivity Engineered into Structurally Characterized Designed Coiled Coils.
    Slope LN; Daubney OJ; Campbell H; White SA; Peacock AFA
    Angew Chem Int Ed Engl; 2021 Nov; 60(46):24473-24477. PubMed ID: 34495573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive allostery in metal ion binding by a cooperatively folded β-peptide bundle.
    Miller JP; Melicher MS; Schepartz A
    J Am Chem Soc; 2014 Oct; 136(42):14726-9. PubMed ID: 25290247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a three-helix bundle capable of binding heavy metals in a triscysteine environment.
    Chakraborty S; Kravitz JY; Thulstrup PW; Hemmingsen L; DeGrado WF; Pecoraro VL
    Angew Chem Int Ed Engl; 2011 Feb; 50(9):2049-53. PubMed ID: 21344549
    [No Abstract]   [Full Text] [Related]  

  • 11. Alpha-helical peptide assemblies giving new function to designed structures.
    Bromley EH; Channon KJ
    Prog Mol Biol Transl Sci; 2011; 103():231-75. PubMed ID: 21999998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switching the chirality of the metal environment alters the coordination mode in designed peptides.
    Peacock AF; Stuckey JA; Pecoraro VL
    Angew Chem Int Ed Engl; 2009; 48(40):7371-4. PubMed ID: 19579245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalysis and Electron Transfer in
    Koebke KJ; Pinter TBJ; Pitts WC; Pecoraro VL
    Chem Rev; 2022 Jul; 122(14):12046-12109. PubMed ID: 35763791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-Templated Design of Chemically Switchable Protein Assemblies with High-Affinity Coordination Sites.
    Kakkis A; Gagnon D; Esselborn J; Britt RD; Tezcan FA
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):21940-21944. PubMed ID: 32830423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of heteronuclear NMR spectroscopy in biological and medicinal inorganic chemistry.
    Ronconi L; Sadler PJ
    Coord Chem Rev; 2008 Nov; 252(21):2239-2277. PubMed ID: 32226090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective cadmium regulation mediated by a cooperative binding mechanism in CadR.
    Liu X; Hu Q; Yang J; Huang S; Wei T; Chen W; He Y; Wang D; Liu Z; Wang K; Gan J; Chen H
    Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20398-20403. PubMed ID: 31548408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective coordination of three transition metal ions within a coiled-coil peptide scaffold.
    Boyle AL; Rabe M; Crone NSA; Rhys GG; Soler N; Voskamp P; Pannu NS; Kros A
    Chem Sci; 2019 Aug; 10(31):7456-7465. PubMed ID: 31489168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Outer Coordination Sphere Modifications Can Impact Metal Structures in Proteins: A Crystallographic Evaluation.
    Ruckthong L; Stuckey JA; Pecoraro VL
    Chemistry; 2019 May; 25(27):6773-6787. PubMed ID: 30861211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of second coordination sphere D-amino acids alters Cd(II) geometries in designed thiolate-rich proteins.
    Ruckthong L; Deb A; Hemmingsen L; Penner-Hahn JE; Pecoraro VL
    J Biol Inorg Chem; 2018 Jan; 23(1):123-135. PubMed ID: 29218636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead(II) Binding in Natural and Artificial Proteins.
    Cangelosi V; Ruckthong L; Pecoraro VL
    Met Ions Life Sci; 2017 Apr; 17():. PubMed ID: 28731303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.