These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 16366685)

  • 1. Isomeric influence on the oxidative coloration of phenolic compounds in a model white wine: comparison of (+)-catechin and (-)-epicatechin.
    Labrouche F; Clark AC; Prenzler PD; Scollary GR
    J Agric Food Chem; 2005 Dec; 53(26):9993-8. PubMed ID: 16366685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of stereochemistry of antioxidants and flavonols on oxidation processes in a model wine system: ascorbic acid, erythorbic acid, +-catechin and (-)-epicatechin.
    Clark AC; Vestner J; Barril C; Maury C; Prenzler PD; Scollary GR
    J Agric Food Chem; 2010 Jan; 58(2):1004-11. PubMed ID: 20039675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of copper(II) in the bridging reactions of (+)-catechin by glyoxylic acid in a model white wine.
    Clark AC; Prenzler PD; Scollary GR
    J Agric Food Chem; 2003 Oct; 51(21):6204-10. PubMed ID: 14518945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delaying effect of a wine Lactobacillus plantarum strain on the coloration and xanthylium pigment formation occurring in (+)-catechin and (-)-epicatechin wine model solutions.
    Curiel JA; Muñoz R; López de Felipe F
    J Agric Food Chem; 2010 Nov; 58(21):11318-24. PubMed ID: 20925383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of pigment precursor (+)-1''-methylene-6''-hydroxy-2H-furan-5''-one-catechin isomers from (+)-catechin and a degradation product of ascorbic acid in a model wine system.
    Barril C; Clark AC; Prenzler PD; Karuso P; Scollary GR
    J Agric Food Chem; 2009 Oct; 57(20):9539-46. PubMed ID: 20560623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant action of glutathione and the ascorbic acid/glutathione pair in a model white wine.
    Sonni F; Clark AC; Prenzler PD; Riponi C; Scollary GR
    J Agric Food Chem; 2011 Apr; 59(8):3940-9. PubMed ID: 21384873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tandem mass spectrometry of the B-type procyanidins in wine and B-type dehydrodicatechins in an autoxidation mixture of (+)-catechin and (-)-epicatechin.
    Sun W; Miller JM
    J Mass Spectrom; 2003 Apr; 38(4):438-46. PubMed ID: 12717756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production and Isomeric Distribution of Xanthylium Cation Pigments and Their Precursors in Wine-like Conditions: Impact of Cu(II), Fe(II), Fe(III), Mn(II), Zn(II), and Al(III).
    Guo A; Kontoudakis N; Scollary GR; Clark AC
    J Agric Food Chem; 2017 Mar; 65(11):2414-2425. PubMed ID: 28231705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining the ascorbic acid crossover from anti-oxidant to pro-oxidant in a model wine matrix containing (+)-catechin.
    Bradshaw MP; Cheynier V; Scollary GR; Prenzler PD
    J Agric Food Chem; 2003 Jul; 51(14):4126-32. PubMed ID: 12822957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new class of anthocyanin-procyanidin condensation products detected in red wine by electrospray ionization multi-stage mass spectrometry analysis.
    Sun B; Fernandes TA; Spranger MI
    Rapid Commun Mass Spectrom; 2010 Feb; 24(3):254-60. PubMed ID: 20049894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the contribution of ascorbic acid to the pigment development in model white wine systems using liquid chromatography with diode array and mass spectrometry detection techniques.
    Barril C; Clark AC; Scollary GR
    Anal Chim Acta; 2008 Jul; 621(1):44-51. PubMed ID: 18573369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of non-anthocyanin phenolic compounds in wine samples using high performance liquid chromatography with ultraviolet and fluorescence detection.
    Rodríguez-Bernaldo de Quirós A; López-Hernández J; Ferraces-Casais P; Lage-Yusty MA
    J Sep Sci; 2007 Jun; 30(9):1262-6. PubMed ID: 17623466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the impact of bottle colour and phenolic concentration on pigment development in white wine stored under external conditions.
    Maury C; Clark AC; Scollary GR
    Anal Chim Acta; 2010 Feb; 660(1-2):81-6. PubMed ID: 20103147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous separation and identification of oligomeric procyanidins and anthocyanin-derived pigments in raw red wine by HPLC-UV-ESI-MSn.
    Pati S; Losito I; Gambacorta G; La Notte E; Palmisano F; Zambonin PG
    J Mass Spectrom; 2006 Jul; 41(7):861-71. PubMed ID: 16770836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glyceraldehyde bridging between flavanols and malvidin-3-glucoside in model solutions.
    Laurie VF; Waterhouse AL
    J Agric Food Chem; 2006 Nov; 54(24):9105-11. PubMed ID: 17117797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of fluorescent lighting on the browning potential of model wine solutions containing organic acids and iron.
    Grant-Preece P; Barril C; Schmidtke LM; Clark AC
    Food Chem; 2018 Mar; 243():239-248. PubMed ID: 29146334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a polyphenols-enriched chardonnay white wine in diabetic rats.
    Landrault N; Poucheret P; Azay J; Krosniak M; Gasc F; Jenin C; Cros G; Teissedre PL
    J Agric Food Chem; 2003 Jan; 51(1):311-8. PubMed ID: 12502426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of different phenolic copigments on the color of malvidin 3-glucoside.
    Gómez-Míguez M; González-Manzano S; Escribano-Bailón MT; Heredia FJ; Santos-Buelga C
    J Agric Food Chem; 2006 Jul; 54(15):5422-9. PubMed ID: 16848527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera).
    Jensen JS; Demiray S; Egebo M; Meyer AS
    J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of glutathione on the formation of methylmethine- and carboxymethine-bridged (+)-catechin dimers in a model wine system.
    Sonni F; Moore EG; Clark AC; Chinnici F; Riponi C; Scollary GR
    J Agric Food Chem; 2011 Jul; 59(13):7410-8. PubMed ID: 21591782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.