These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1636739)

  • 1. Bidirectional peritoneal transport of immunoglobulin in rats: tissue concentration profiles.
    Flessner MF; Dedrick RL; Reynolds JC
    Am J Physiol; 1992 Jul; 263(1 Pt 2):F15-23. PubMed ID: 1636739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional peritoneal transport of immunoglobulin in rats: compartmental kinetics.
    Flessner MF; Dedrick RL; Reynolds JC
    Am J Physiol; 1992 Feb; 262(2 Pt 2):F275-87. PubMed ID: 1539687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoclonal antibody delivery to intraperitoneal tumors in rats: effects of route of administration and intraperitoneal solution osmolality.
    Flessner MF; Dedrick RL
    Cancer Res; 1994 Aug; 54(16):4376-84. PubMed ID: 8044785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of intraperitoneal pressures on tissue water of the abdominal muscle.
    Zakaria ER; Lofthouse J; Flessner MF
    Am J Physiol Renal Physiol; 2000 Jun; 278(6):F875-85. PubMed ID: 10836975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmotic barrier of the parietal peritoneum.
    Flessner MF
    Am J Physiol; 1994 Nov; 267(5 Pt 2):F861-70. PubMed ID: 7977791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of protein in the abdominal wall during intraperitoneal therapy. I. Theoretical approach.
    Flessner MF
    Am J Physiol Gastrointest Liver Physiol; 2001 Aug; 281(2):G424-37. PubMed ID: 11447023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A distributed model of peritoneal-plasma transport: tissue concentration gradients.
    Flessner MF; Fenstermacher JD; Dedrick RL; Blasberg RG
    Am J Physiol; 1985 Mar; 248(3 Pt 2):F425-35. PubMed ID: 3919596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrostatic and osmotic pressures modulate partitioning of tissue water in abdominal muscle during dialysis.
    Zakaria ER; Lofthouse J; Flessner MF
    Perit Dial Int; 1999; 19 Suppl 2():S208-11. PubMed ID: 10406520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo diffusion of immunoglobulin G in muscle: effects of binding, solute exclusion, and lymphatic removal.
    Flessner MF; Lofthouse J; Zakaria el-R
    Am J Physiol; 1997 Dec; 273(6):H2783-93. PubMed ID: 9435615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulations of osmotic ultrafiltration and small-solute transport in peritoneal dialysis: a spatially distributed approach.
    Stachowska-Pietka J; Waniewski J; Flessner MF; Lindholm B
    Am J Physiol Renal Physiol; 2012 May; 302(10):F1331-41. PubMed ID: 22301624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Net ultrafiltration in peritoneal dialysis: role of direct fluid absorption into peritoneal tissue.
    Flessner MF
    Blood Purif; 1992; 10(3-4):136-47. PubMed ID: 1308680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transvascular passage of macromolecules into the peritoneal cavity of normo- and hypothermic rats in vivo: active or passive transport?
    Rosengren BI; Carlsson O; Venturoli D; al Rayyes O; Rippe B
    J Vasc Res; 2004; 41(2):123-30. PubMed ID: 15010575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure threshold for fluid loss from the peritoneal cavity.
    Flessner MF; Schwab A
    Am J Physiol; 1996 Feb; 270(2 Pt 2):F377-90. PubMed ID: 8779900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo hydraulic conductivity of muscle: effects of hydrostatic pressure.
    Zakaria el-R ; Lofthouse J; Flessner MF
    Am J Physiol; 1997 Dec; 273(6):H2774-82. PubMed ID: 9435614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributed modeling of osmotically driven fluid transport in peritoneal dialysis: theoretical and computational investigations.
    Waniewski J; Stachowska-Pietka J; Flessner MF
    Am J Physiol Heart Circ Physiol; 2009 Jun; 296(6):H1960-8. PubMed ID: 19329769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High peritoneal residual volume decreases the efficiency of peritoneal dialysis.
    Wang T; Cheng HH; Heimbürger O; Bergström J; Lindholm B
    Kidney Int; 1999 May; 55(5):2040-8. PubMed ID: 10231469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies of dipeptide-based and amino acid-based peritoneal dialysis solutions.
    Weryński A; Waniewski J; Wang T; Anderstam B; Lindholm B; Bergström J
    Kidney Int; 2001 Jan; 59(1):363-71. PubMed ID: 11135092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distributed modeling of glucose-induced osmotic flow.
    Waniewski J; Dutka V; Stachowska-Pietka J; Cherniha R
    Adv Perit Dial; 2007; 23():2-6. PubMed ID: 17886594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transport barrier in intraperitoneal therapy.
    Flessner MF
    Am J Physiol Renal Physiol; 2005 Mar; 288(3):F433-42. PubMed ID: 15692055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyaluronan prevents the decreased net ultrafiltration caused by increased peritoneal dialysate fill volume.
    Wang T; Cheng HH; Heimbürger O; Waniewski J; Bergström J; Lindholm B
    Kidney Int; 1998 Feb; 53(2):496-502. PubMed ID: 9461112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.