These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
823 related articles for article (PubMed ID: 16367751)
1. Parvalbumin deficiency in fast-twitch muscles leads to increased 'slow-twitch type' mitochondria, but does not affect the expression of fiber specific proteins. Racay P; Gregory P; Schwaller B FEBS J; 2006 Jan; 273(1):96-108. PubMed ID: 16367751 [TBL] [Abstract][Full Text] [Related]
2. Deficiency in parvalbumin increases fatigue resistance in fast-twitch muscle and upregulates mitochondria. Chen G; Carroll S; Racay P; Dick J; Pette D; Traub I; Vrbova G; Eggli P; Celio M; Schwaller B Am J Physiol Cell Physiol; 2001 Jul; 281(1):C114-22. PubMed ID: 11401833 [TBL] [Abstract][Full Text] [Related]
3. Changes in acetylcholine receptor function induce shifts in muscle fiber type composition. Jin TE; Wernig A; Witzemann V FEBS J; 2008 May; 275(9):2042-54. PubMed ID: 18384381 [TBL] [Abstract][Full Text] [Related]
4. Parvalbumin expression is downregulated in rat fast-twitch skeletal muscles during aging. Cai DQ; Li M; Lee KK; Lee KM; Qin L; Chan KM Arch Biochem Biophys; 2001 Mar; 387(2):202-8. PubMed ID: 11370842 [TBL] [Abstract][Full Text] [Related]
5. Deficiency in parvalbumin, but not in calbindin D-28k upregulates mitochondrial volume and decreases smooth endoplasmic reticulum surface selectively in a peripheral, subplasmalemmal region in the soma of Purkinje cells. Chen G; Racay P; Bichet S; Celio MR; Eggli P; Schwaller B Neuroscience; 2006 Sep; 142(1):97-105. PubMed ID: 16860487 [TBL] [Abstract][Full Text] [Related]
6. Proteomic analysis of slow- and fast-twitch skeletal muscles. Okumura N; Hashida-Okumura A; Kita K; Matsubae M; Matsubara T; Takao T; Nagai K Proteomics; 2005 Jul; 5(11):2896-906. PubMed ID: 15981298 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional regulation of acetylcholinesterase-associated collagen ColQ in fast- and slow-twitch muscle fibers. Ting AK; Siow NL; Kong LW; Tsim KW Chem Biol Interact; 2005 Dec; 157-158():63-70. PubMed ID: 16256971 [TBL] [Abstract][Full Text] [Related]
8. Decay of Ca2+ and force transients in fast- and slow-twitch skeletal muscles from the rat, mouse and Etruscan shrew. Wetzel P; Gros G J Exp Biol; 1998 Feb; 201(Pt 3):375-84. PubMed ID: 9503643 [TBL] [Abstract][Full Text] [Related]
9. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres. Trinh HH; Lamb GD Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):591-600. PubMed ID: 16789925 [TBL] [Abstract][Full Text] [Related]
11. Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers. Mu X; Brown LD; Liu Y; Schneider MF Physiol Genomics; 2007 Aug; 30(3):300-12. PubMed ID: 17473216 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of ryanodine receptor 1 in fast skeletal muscle fibers induces a fast-to-slow muscle fiber type transition. Jordan T; Jiang H; Li H; DiMario JX J Cell Sci; 2004 Dec; 117(Pt 25):6175-83. PubMed ID: 15564379 [TBL] [Abstract][Full Text] [Related]
13. Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles. Bozzo C; Spolaore B; Toniolo L; Stevens L; Bastide B; Cieniewski-Bernard C; Fontana A; Mounier Y; Reggiani C FEBS J; 2005 Nov; 272(22):5771-85. PubMed ID: 16279942 [TBL] [Abstract][Full Text] [Related]
14. Alterations in intrinsic mitochondrial function with aging are fiber type-specific and do not explain differential atrophy between muscles. Picard M; Ritchie D; Thomas MM; Wright KJ; Hepple RT Aging Cell; 2011 Dec; 10(6):1047-55. PubMed ID: 21933339 [TBL] [Abstract][Full Text] [Related]
15. Changes in triacylglycerol-accumulated fiber type, fiber type composition, and biogenesis in the mitochondria of the soleus muscle in obese rats. Kaneko S; Iida RH; Suga T; Fukui T; Morito M; Yamane A Anat Rec (Hoboken); 2011 Nov; 294(11):1904-12. PubMed ID: 21956862 [TBL] [Abstract][Full Text] [Related]
16. Antagonistic Regulation of Parvalbumin Expression and Mitochondrial Calcium Handling Capacity in Renal Epithelial Cells. Henzi T; Schwaller B PLoS One; 2015; 10(11):e0142005. PubMed ID: 26540196 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice. Bruton JD; Dahlstedt AJ; Abbate F; Westerblad H J Physiol; 2003 Oct; 552(Pt 2):393-402. PubMed ID: 14561823 [TBL] [Abstract][Full Text] [Related]
18. Parvalbumin in cross-reinnervated and denervated muscles. Müntener M; Berchtold MW; Heizmann CW Muscle Nerve; 1985 Feb; 8(2):132-7. PubMed ID: 2932637 [TBL] [Abstract][Full Text] [Related]
19. Age-related changes of aqueous protein profiles in rat fast and slow twitch skeletal muscles. Cai D; Li M; Lee K; Lee K; Wong W; Chan K Electrophoresis; 2000 Jan; 21(2):465-72. PubMed ID: 10675029 [TBL] [Abstract][Full Text] [Related]
20. Genetic architecture of fast- and slow-twitch skeletal muscle weight in 200-day-old mice of the C57BL/6J and DBA/2J lineage. Lionikas A; Blizard DA; Vandenbergh DJ; Glover MG; Stout JT; Vogler GP; McClearn GE; Larsson L Physiol Genomics; 2003 Dec; 16(1):141-52. PubMed ID: 14679300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]