These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16368100)

  • 1. An analytical study on the thermal effects of cryosurgery on selective cell destruction.
    Chua KJ; Chou SK; Ho JC
    J Biomech; 2007; 40(1):100-16. PubMed ID: 16368100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of tissue injury in cryosurgery.
    Gage AA; Baust J
    Cryobiology; 1998 Nov; 37(3):171-86. PubMed ID: 9787063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A semi-empirical treatment planning model for optimization of multiprobe cryosurgery.
    Baissalov R; Sandison GA; Donnelly BJ; Saliken JC; McKinnon JG; Muldrew K; Rewcastle JC
    Phys Med Biol; 2000 May; 45(5):1085-98. PubMed ID: 10843092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryosurgery of dunning AT-1 rat prostate tumor: thermal, biophysical, and viability response at the cellular and tissue level.
    Bischof JC; Smith D; Pazhayannur PV; Manivel C; Hulbert J; Roberts KP
    Cryobiology; 1997 Feb; 34(1):42-69. PubMed ID: 9028916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-cryosurgery: advances and challenges.
    Liu J; Deng ZS
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4521-42. PubMed ID: 19928115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryosurgical technique: assessment of the fundamental variables using human prostate cancer model systems.
    Klossner DP; Robilotto AT; Clarke DM; VanBuskirk RG; Baust JM; Gage AA; Baust JG
    Cryobiology; 2007 Dec; 55(3):189-99. PubMed ID: 17888898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of thermal variables on human breast cancer in cryosurgery.
    Rui J; Tatsutani KN; Dahiya R; Rubinsky B
    Breast Cancer Res Treat; 1999 Jan; 53(2):185-92. PubMed ID: 10326796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber: Part I--thermal response.
    Hoffmann NE; Bischof JC
    J Biomech Eng; 2001 Aug; 123(4):301-9. PubMed ID: 11563754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of freezing parameters (freeze cycle and thaw process) on tissue destruction following renal cryoablation.
    Woolley ML; Schulsinger DA; Durand DB; Zeltser IS; Waltzer WC
    J Endourol; 2002 Sep; 16(7):519-22. PubMed ID: 12396446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental study on pulmonary cryoablation in a porcine model of normal lungs.
    Niu L; Zhou L; Korpan NN; Wu B; Tang J; Mu F; Li H; Hao Z; Chiu D; Xu K
    Technol Cancer Res Treat; 2012 Aug; 11(4):389-94. PubMed ID: 22475062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of varying freezing and thawing rates in experimental cryosurgery.
    Gage AA; Guest K; Montes M; Caruana JA; Whalen DA
    Cryobiology; 1985 Apr; 22(2):175-82. PubMed ID: 3979086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cryoinjury model using engineered tissue equivalents for cryosurgical applications.
    Han B; Grassl ED; Barocas VH; Coad JE; Bischof JC
    Ann Biomed Eng; 2005 Jul; 33(7):972-82. PubMed ID: 16060538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the cryoablative efficacy of a hybrid cryoprobe operating under freeze-thaw cycles.
    Zhao X; Chua KJ
    Cryobiology; 2013 Jun; 66(3):239-49. PubMed ID: 23454435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breast Cancer Cryoablation: Assessment of the Impact of Fundamental Procedural Variables in an In Vitro Human Breast Cancer Model.
    Snyder KK; Van Buskirk RG; Baust JG; Baust JM
    Breast Cancer (Auckl); 2020; 14():1178223420972363. PubMed ID: 33239880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying the performance of bifurcate cryoprobes based on shape factor of cryoablative zones.
    Zhao X; Chua KJ
    Cryobiology; 2014 Jun; 68(3):309-17. PubMed ID: 24792542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite element model for ice ball evolution in a multi-probe cryosurgery.
    Liu Z; Muldrew K; Wan R; Rewcastle J
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):197-208. PubMed ID: 12888431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced hepatic tissue destruction in ablative cryosurgery: potentials of intermittent freezing and selective vascular inflow occlusion.
    Kollmar O; Richter S; Schilling MK; Menger MD; Pistorius GA
    Cryobiology; 2004 Jun; 48(3):263-72. PubMed ID: 15157775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulations on multiprobe freezing of irregularly shaped tumors.
    Chua KJ
    Comput Biol Med; 2011 Jul; 41(7):493-505. PubMed ID: 21621757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The operation and efficacy of cryosurgical, nitrous oxide-driven cryoprobe. I. Cryoprobe physical characteristics: their effects on cell cryodestruction.
    Homasson JP; Thiery JP; Angebault M; Ovtracht L; Maiwand O
    Cryobiology; 1994 Jun; 31(3):290-304. PubMed ID: 8050273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microscale model for prediction of breast cancer cell damage during cryosurgery.
    Zhang A; Xu LX; Sandison GA; Zhang J
    Cryobiology; 2003 Oct; 47(2):143-54. PubMed ID: 14580848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.