BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 16368108)

  • 1. Structural prediction of peptides bound to MHC class I.
    Fagerberg T; Cerottini JC; Michielin O
    J Mol Biol; 2006 Feb; 356(2):521-46. PubMed ID: 16368108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes.
    Bordner AJ; Abagyan R
    Proteins; 2006 May; 63(3):512-26. PubMed ID: 16470819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes at the floor of the peptide-binding groove induce a strong preference for proline at position 3 of the bound peptide: molecular dynamics simulations of HLA-A*0217.
    Toh H; Savoie CJ; Kamikawaji N; Muta S; Sasazuki T; Kuhara S
    Biopolymers; 2000 Oct; 54(5):318-27. PubMed ID: 10935972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional structures of MHC class I-peptide complexes: implications for peptide recognition.
    Persson K; Schneider G
    Arch Immunol Ther Exp (Warsz); 2000; 48(3):135-42. PubMed ID: 10912617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MHC class I/peptide interactions: binding specificity and kinetics.
    Margulies DH; Corr M; Boyd LF; Khilko SN
    J Mol Recognit; 1993 Jun; 6(2):59-69. PubMed ID: 8305252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of the differential stability and receptor specificity of H-2Db in complex with murine versus human beta2-microglobulin.
    Achour A; Michaëlsson J; Harris RA; Ljunggren HG; Kärre K; Schneider G; Sandalova T
    J Mol Biol; 2006 Feb; 356(2):382-96. PubMed ID: 16375919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based prediction of MHC-peptide association: algorithm comparison and application to cancer vaccine design.
    Schiewe AJ; Haworth IS
    J Mol Graph Model; 2007 Oct; 26(3):667-75. PubMed ID: 17493854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential.
    Liu Z; Dominy BN; Shakhnovich EI
    J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations.
    Antes I; Siu SW; Lengauer T
    Bioinformatics; 2006 Jul; 22(14):e16-24. PubMed ID: 16873467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale molecular dynamics simulations of HLA-A*0201 complexed with a tumor-specific antigenic peptide: can the alpha3 and beta2m domains be neglected?
    Wan S; Coveney P; Flower DR
    J Comput Chem; 2004 Nov; 25(15):1803-13. PubMed ID: 15386470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based identification of MHC binding peptides: Benchmarking of prediction accuracy.
    Kumar N; Mohanty D
    Mol Biosyst; 2010 Dec; 6(12):2508-20. PubMed ID: 20953500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexibility of the MHC class II peptide binding cleft in the bound, partially filled, and empty states: a molecular dynamics simulation study.
    Yaneva R; Springer S; Zacharias M
    Biopolymers; 2009 Jan; 91(1):14-27. PubMed ID: 18767126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics and structure-based drug design for predicting non-natural nonapeptide binding to a class I MHC protein.
    Scapozza L; Rognan D; Folkers G; Daser A
    Acta Crystallogr D Biol Crystallogr; 1995 Jul; 51(Pt 4):541-9. PubMed ID: 15299842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate and efficient generalized born model based on solvent accessibility: derivation and application for LogP octanol/water prediction and flexible peptide docking.
    Totrov M
    J Comput Chem; 2004 Mar; 25(4):609-19. PubMed ID: 14735578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSAR method for prediction of protein-peptide binding affinity: application to MHC class I molecule HLA-A*0201.
    Zhao C; Zhang H; Luan F; Zhang R; Liu M; Hu Z; Fan B
    J Mol Graph Model; 2007 Jul; 26(1):246-54. PubMed ID: 17275373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential tapasin dependence of MHC class I molecules correlates with conformational changes upon peptide dissociation: a molecular dynamics simulation study.
    Sieker F; Straatsma TP; Springer S; Zacharias M
    Mol Immunol; 2008 Aug; 45(14):3714-22. PubMed ID: 18639935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of peptide-protein binding using amino acid descriptors: prediction and experimental verification for human histocompatibility complex HLA-A0201.
    Guan P; Doytchinova IA; Walshe VA; Borrow P; Flower DR
    J Med Chem; 2005 Nov; 48(23):7418-25. PubMed ID: 16279801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein loop conformations using multiscale modeling methods with physical energy scoring functions.
    Olson MA; Feig M; Brooks CL
    J Comput Chem; 2008 Apr; 29(5):820-31. PubMed ID: 17876760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.