These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 16368110)
1. Dynamics of allostery in hemoglobin: roles of the penultimate tyrosine H bonds. Kneipp J; Balakrishnan G; Chen R; Shen TJ; Sahu SC; Ho NT; Giovannelli JL; Simplaceanu V; Ho C; Spiro TG J Mol Biol; 2006 Feb; 356(2):335-53. PubMed ID: 16368110 [TBL] [Abstract][Full Text] [Related]
2. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy. Wang D; Spiro TG Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699 [TBL] [Abstract][Full Text] [Related]
3. Hemoglobin site-mutants reveal dynamical role of interhelical H-bonds in the allosteric pathway: time-resolved UV resonance Raman evidence for intra-dimer coupling. Balakrishnan G; Tsai CH; Wu Q; Case MA; Pevsner A; McLendon GL; Ho C; Spiro TG J Mol Biol; 2004 Jul; 340(4):857-68. PubMed ID: 15223326 [TBL] [Abstract][Full Text] [Related]
4. Quaternary structure sensitive tyrosine interactions in hemoglobin: a UV resonance Raman study of the double mutant rHb (beta99Asp-->Asn, alpha42Tyr-->Asp). Huang S; Peterson ES; Ho C; Friedman JM Biochemistry; 1997 May; 36(20):6197-206. PubMed ID: 9166792 [TBL] [Abstract][Full Text] [Related]
5. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A. Peterson ES; Friedman JM Biochemistry; 1998 Mar; 37(13):4346-57. PubMed ID: 9521755 [TBL] [Abstract][Full Text] [Related]
6. New light on allostery: dynamic resonance Raman spectroscopy of hemoglobin kempsey. Hu X; Rodgers KR; Mukerji I; Spiro TG Biochemistry; 1999 Mar; 38(12):3462-7. PubMed ID: 10090732 [TBL] [Abstract][Full Text] [Related]
7. UV resonance Raman spectra reveal a structural basis for diminished proton and CO2 binding to alpha,alpha-cross-linked hemoglobin. Dick LA; Heibel G; Moore EG; Spiro TG Biochemistry; 1999 May; 38(20):6406-10. PubMed ID: 10350458 [TBL] [Abstract][Full Text] [Related]
8. Effects of substitutions of lysine and aspartic acid for asparagine at beta 108 and of tryptophan for valine at alpha 96 on the structural and functional properties of human normal adult hemoglobin: roles of alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces in the cooperative oxygenation process. Tsai CH; Shen TJ; Ho NT; Ho C Biochemistry; 1999 Jul; 38(27):8751-61. PubMed ID: 10393550 [TBL] [Abstract][Full Text] [Related]
9. Quaternary structure sensitive tyrosine residues in human hemoglobin: UV resonance raman studies of mutants at alpha140, beta35, and beta145 tyrosine. Nagai M; Wajcman H; Lahary A; Nakatsukasa T; Nagatomo S; Kitagawa T Biochemistry; 1999 Jan; 38(4):1243-51. PubMed ID: 9930984 [TBL] [Abstract][Full Text] [Related]
10. Significance of beta116 His (G18) at alpha1beta1 contact sites for alphabeta assembly and autoxidation of hemoglobin. Adachi K; Yang Y; Lakka V; Wehrli S; Reddy KS; Surrey S Biochemistry; 2003 Sep; 42(34):10252-9. PubMed ID: 12939154 [TBL] [Abstract][Full Text] [Related]
11. Tyrosine and tryptophan structure markers in hemoglobin ultraviolet resonance Raman spectra: mode assignments via subunit-specific isotope labeling of recombinant protein. Hu X; Spiro TG Biochemistry; 1997 Dec; 36(50):15701-12. PubMed ID: 9398299 [TBL] [Abstract][Full Text] [Related]
12. UV resonance Raman studies of alpha-nitrosyl hemoglobin derivatives: relation between the alpha 1-beta 2 subunit interface interactions and the Fe-histidine bonding of alpha heme. Nagatomo S; Nagai M; Tsuneshige A; Yonetani T; Kitagawa T Biochemistry; 1999 Jul; 38(30):9659-66. PubMed ID: 10423244 [TBL] [Abstract][Full Text] [Related]
13. The occurrence of C--H...O hydrogen bonds in alpha-helices and helix termini in globular proteins. Manikandan K; Ramakumar S Proteins; 2004 Sep; 56(4):768-81. PubMed ID: 15281129 [TBL] [Abstract][Full Text] [Related]
14. Contributions of asparagine at alpha 97 to the cooperative oxygenation process of hemoglobin. Kim HW; Shen TJ; Ho NT; Zou M; Tam MF; Ho C Biochemistry; 1996 May; 35(21):6620-7. PubMed ID: 8639610 [TBL] [Abstract][Full Text] [Related]
15. Crystallographic evidence for a new ensemble of ligand-induced allosteric transitions in hemoglobin: the T-to-T(high) quaternary transitions. Kavanaugh JS; Rogers PH; Arnone A Biochemistry; 2005 Apr; 44(16):6101-21. PubMed ID: 15835899 [TBL] [Abstract][Full Text] [Related]
16. Time-resolved absorption and UV resonance Raman spectra reveal stepwise formation of T quaternary contacts in the allosteric pathway of hemoglobin. Balakrishnan G; Case MA; Pevsner A; Zhao X; Tengroth C; McLendon GL; Spiro TG J Mol Biol; 2004 Jul; 340(4):843-56. PubMed ID: 15223325 [TBL] [Abstract][Full Text] [Related]
17. A new way to understand quaternary structure changes of hemoglobin upon ligand binding on the basis of UV-resonance Raman evaluation of intersubunit interactions. Nagatomo S; Nagai M; Kitagawa T J Am Chem Soc; 2011 Jul; 133(26):10101-10. PubMed ID: 21615086 [TBL] [Abstract][Full Text] [Related]
18. Fourier transform infrared evidence against Asp beta 99 protonation in hemoglobin: nature of the Tyr alpha 42-Asp beta 99 quaternary H-bond. Hu X; Dick LA; Spiro TG Biochemistry; 1998 Jun; 37(26):9445-8. PubMed ID: 9649327 [TBL] [Abstract][Full Text] [Related]
19. Changes of near-UV CD spectrum of human hemoglobin upon oxygen binding: a study of mutants at alpha 42, alpha 140, beta 145 tyrosine or beta 37 tryptophan. Jin Y; Sakurai H; Nagai Y; Nagai M Biopolymers; 2004 May-Jun 5; 74(1-2):60-3. PubMed ID: 15137095 [TBL] [Abstract][Full Text] [Related]
20. Novel water-mediated hydrogen bonds as the structural basis for the low oxygen affinity of the blood substitute candidate rHb(alpha 96Val-->Trp). Puius YA; Zou M; Ho NT; Ho C; Almo SC Biochemistry; 1998 Jun; 37(26):9258-65. PubMed ID: 9649306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]