These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 16368228)

  • 1. Design of poly(ethylene glycol)-tethered copolymers as novel mucoadhesive drug delivery systems.
    Serra L; Doménech J; Peppas NA
    Eur J Pharm Biopharm; 2006 May; 63(1):11-8. PubMed ID: 16368228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An examination of the rheological and mucoadhesive properties of poly(acrylic acid) organogels designed as platforms for local drug delivery to the oral cavity.
    Jones DS; Muldoon BC; Woolfson AD; Sanderson FD
    J Pharm Sci; 2007 Oct; 96(10):2632-46. PubMed ID: 17702045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of poly(acrylic acid-co-ethylhexyl acrylate) films for mucoadhesive transbuccal drug delivery: factors affecting the force of mucoadhesion.
    Shojaei AH; Paulson J; Honary S
    J Control Release; 2000 Jul; 67(2-3):223-32. PubMed ID: 10825556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced hydrogel adhesion by polymer interdiffusion: use of linear poly(ethylene glycol) as an adhesion promoter.
    Sahlin JJ; Peppas NA
    J Biomater Sci Polym Ed; 1997; 8(6):421-36. PubMed ID: 9151191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels.
    Serra L; Doménech J; Peppas NA
    Biomaterials; 2006 Nov; 27(31):5440-51. PubMed ID: 16828864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels.
    Park H; Robinson JR
    Pharm Res; 1987 Dec; 4(6):457-64. PubMed ID: 3508557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels.
    Bromberg L; Temchenko M; Alakhov V; Hatton TA
    Int J Pharm; 2004 Sep; 282(1-2):45-60. PubMed ID: 15336381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular hydrogels from cisplatin-loaded block copolymer nanoparticles and α-cyclodextrins with a stepwise delivery property.
    Zhu W; Li Y; Liu L; Chen Y; Wang C; Xi F
    Biomacromolecules; 2010 Nov; 11(11):3086-92. PubMed ID: 20958000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).
    Jin N; Zhang H; Jin S; Dadmun MD; Zhao B
    J Phys Chem B; 2012 Mar; 116(10):3125-37. PubMed ID: 22352399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mucoadhesive drug carriers based on complexes of poly(acrylic acid) and PEGylated drugs having hydrolysable PEG-anhydride-drug linkages.
    Lele BS; Hoffman AS
    J Control Release; 2000 Nov; 69(2):237-48. PubMed ID: 11064131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications.
    Alexander A; Ajazuddin ; Khan J; Saraf S; Saraf S
    Eur J Pharm Biopharm; 2014 Nov; 88(3):575-85. PubMed ID: 25092423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular hydrogels as a universal scaffold for stepwise delivering Dox and Dox/cisplatin loaded block copolymer micelles.
    Zhu W; Li Y; Liu L; Chen Y; Xi F
    Int J Pharm; 2012 Nov; 437(1-2):11-9. PubMed ID: 22902390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular aspects of muco- and bioadhesion: tethered structures and site-specific surfaces.
    Huang Y; Leobandung W; Foss A; Peppas NA
    J Control Release; 2000 Mar; 65(1-2):63-71. PubMed ID: 10699271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of mucoadhesive polymers on the in vitro performance of insulin-loaded silica nanoparticles: Interactions with mucin and biomembrane models.
    Andreani T; Miziara L; Lorenzón EN; de Souza AL; Kiill CP; Fangueiro JF; Garcia ML; Gremião PD; Silva AM; Souto EB
    Eur J Pharm Biopharm; 2015 Jun; 93():118-26. PubMed ID: 25843239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake.
    Jintapattanakit A; Junyaprasert VB; Kissel T
    J Pharm Sci; 2009 Dec; 98(12):4818-30. PubMed ID: 19408295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers.
    Wagner VE; Koberstein JT; Bryers JD
    Biomaterials; 2004 May; 25(12):2247-63. PubMed ID: 14741590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesion of polyether-modified poly(acrylic acid) to mucin.
    Cleary J; Bromberg L; Magner E
    Langmuir; 2004 Oct; 20(22):9755-62. PubMed ID: 15491211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and in vitro evaluation of a mucoadhesive vaginal delivery system for nystatin.
    Hombach J; Palmberger TF; Bernkop-Schnürch A
    J Pharm Sci; 2009 Feb; 98(2):555-64. PubMed ID: 18563796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-dependent mucoadhesion of a poly(N-isopropylacrylamide) copolymer reveals design rules for drug delivery.
    Zhu X; Degraaf J; Winnik FM; Leckband D
    Langmuir; 2004 Nov; 20(24):10648-56. PubMed ID: 15544397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rocket-like encapsulation and delivery system with two-stage booster layers: pH-responsive poly(methacrylic acid)/poly(ethylene glycol) complex-coated hollow silica vesicles.
    Lay CL; Kumar JN; Liu CK; Lu X; Liu Y
    Macromol Rapid Commun; 2013 Oct; 34(19):1563-8. PubMed ID: 23996916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.