These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16368627)

  • 1. The relationship between extension of the metatarsophalangeal joint and sprint time for 100 m Olympic athletes.
    Krell JB; Stefanyshyn DJ
    J Sports Sci; 2006 Feb; 24(2):175-80. PubMed ID: 16368627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG.
    Roy JP; Stefanyshyn DJ
    Med Sci Sports Exerc; 2006 Mar; 38(3):562-9. PubMed ID: 16540846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metatarsophalangeal joint function during sprinting: a comparison of barefoot and sprint spike shod foot conditions.
    Smith G; Lake M; Lees A
    J Appl Biomech; 2014 Apr; 30(2):206-12. PubMed ID: 24042098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement procedures affect the interpretation of metatarsophalangeal joint function during accelerated sprinting.
    Smith G; Lake M; Lees A; Worsfold P
    J Sports Sci; 2012; 30(14):1521-7. PubMed ID: 22867449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Track compliance does not affect sprinting performance.
    Stafilidis S; Arampatzis A
    J Sports Sci; 2007 Nov; 25(13):1479-90. PubMed ID: 17852678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forefoot, rearfoot and shank coupling: effect of variations in speed and mode of gait.
    Pohl MB; Messenger N; Buckley JG
    Gait Posture; 2007 Feb; 25(2):295-302. PubMed ID: 16759862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of forefoot stiffness in running and running shoe bending stiffness.
    Oleson M; Adler D; Goldsmith P
    J Biomech; 2005 Sep; 38(9):1886-94. PubMed ID: 16023477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration.
    Wild JJ; Bezodis IN; North JS; Bezodis NE
    Eur J Sport Sci; 2018 Nov; 18(10):1327-1337. PubMed ID: 29996724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in foot and shank coupling due to alterations in foot strike pattern during running.
    Pohl MB; Buckley JG
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):334-41. PubMed ID: 18006125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of parachute-resisted sprinting on running mechanics in collegiate track athletes.
    Paulson S; Braun WA
    J Strength Cond Res; 2011 Jun; 25(6):1680-5. PubMed ID: 21358426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between muscle strength and sprint kinematics in elite sprinters.
    Alexander MJ
    Can J Sport Sci; 1989 Sep; 14(3):148-57. PubMed ID: 2684376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of two different types of foot orthoses on first metatarsophalangeal joint kinematics during gait in a single subject.
    Michaud TC; Nawoczenski DA
    J Manipulative Physiol Ther; 2006 Jan; 29(1):60-5. PubMed ID: 16396732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biomechanical analysis of the long-jump technique of elite female amputee athletes.
    Nolan L; Patritti BL; Simpson KJ
    Med Sci Sports Exerc; 2006 Oct; 38(10):1829-35. PubMed ID: 17019306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related differences in 100-m sprint performance in male and female master runners.
    Korhonen MT; Mero A; Suominen H
    Med Sci Sports Exerc; 2003 Aug; 35(8):1419-28. PubMed ID: 12900699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait asymmetry: composite scores for mechanical analyses of sprint running.
    Exell TA; Gittoes MJ; Irwin G; Kerwin DG
    J Biomech; 2012 Apr; 45(6):1108-11. PubMed ID: 22296935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of a custom foot orthotic intervention on lower extremity dynamics in healthy runners.
    MacLean C; Davis IM; Hamill J
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):623-30. PubMed ID: 16603287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Horizontal force production and multi-segment foot kinematics during the acceleration phase of bend sprinting.
    Judson LJ; Churchill SM; Barnes A; Stone JA; Brookes IGA; Wheat J
    Scand J Med Sci Sports; 2019 Oct; 29(10):1563-1571. PubMed ID: 31131939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segment-interaction in sprint start: Analysis of 3D angular velocity and kinetic energy in elite sprinters.
    Slawinski J; Bonnefoy A; Ontanon G; Leveque JM; Miller C; Riquet A; Chèze L; Dumas R
    J Biomech; 2010 May; 43(8):1494-502. PubMed ID: 20226465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The take-off phase in transtibial amputee high jump.
    Nolan L; Patritti BL
    Prosthet Orthot Int; 2008 Jun; 32(2):160-71. PubMed ID: 18569884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between the length of the forefoot bones and performance in male sprinters.
    Tanaka T; Suga T; Otsuka M; Misaki J; Miyake Y; Kudo S; Nagano A; Isaka T
    Scand J Med Sci Sports; 2017 Dec; 27(12):1673-1680. PubMed ID: 28207966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.