BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 16368772)

  • 1. Accurate prediction of HIV-1 drug response from the reverse transcriptase and protease amino acid sequences using sparse models created by convex optimization.
    Rabinowitz M; Myers L; Banjevic M; Chan A; Sweetkind-Singer J; Haberer J; McCann K; Wolkowicz R
    Bioinformatics; 2006 Mar; 22(5):541-9. PubMed ID: 16368772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why neural networks should not be used for HIV-1 protease cleavage site prediction.
    Rögnvaldsson T; You L
    Bioinformatics; 2004 Jul; 20(11):1702-9. PubMed ID: 14988129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of the l1 norm for selection of sparse parameter sets that accurately predict drug response phenotype from viral genetic sequences.
    Matthew R; Banjevic M; Chan AS; Myers L; Wolkowicz R; Haberer J; Singer J
    AMIA Annu Symp Proc; 2005; 2005():505-9. PubMed ID: 16779091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining HIV protease cleavage data using genetic programming with a sum-product function.
    Yang ZR; Dalby AR; Qiu J
    Bioinformatics; 2004 Dec; 20(18):3398-405. PubMed ID: 15256407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of phenotypic susceptibility to antiretroviral drugs using physiochemical properties of the primary enzymatic structure combined with artificial neural networks.
    Kjaer J; Høj L; Fox Z; Lundgren JD
    HIV Med; 2008 Oct; 9(8):642-52. PubMed ID: 18631257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting human immunodeficiency virus protease cleavage sites in proteins by a discriminant function method.
    Chou KC; Tomasselli AG; Reardon IM; Heinrikson RL
    Proteins; 1996 Jan; 24(1):51-72. PubMed ID: 8628733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting hepatitis C virus protease cleavage sites using generalized linear indicator regression models.
    Yang ZR
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2119-23. PubMed ID: 17019878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrative approach for predicting interactions of protein regions.
    Schelhorn SE; Lengauer T; Albrecht M
    Bioinformatics; 2008 Aug; 24(16):i35-41. PubMed ID: 18689837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Ras-effector interactions using position energy matrices.
    Kiel C; Serrano L
    Bioinformatics; 2007 Sep; 23(17):2226-30. PubMed ID: 17599936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling.
    Vermeiren H; Van Craenenbroeck E; Alen P; Bacheler L; Picchio G; Lecocq P;
    J Virol Methods; 2007 Oct; 145(1):47-55. PubMed ID: 17574687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable context Markov chains for HIV protease cleavage site prediction.
    Oğul H
    Biosystems; 2009 Jun; 96(3):246-50. PubMed ID: 19758550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A regularized discriminative model for the prediction of protein-peptide interactions.
    Lehrach WP; Husmeier D; Williams CK
    Bioinformatics; 2006 Mar; 22(5):532-40. PubMed ID: 16397010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support Vector Machines for predicting HIV protease cleavage sites in protein.
    Cai YD; Liu XJ; Xu XB; Chou KC
    J Comput Chem; 2002 Jan; 23(2):267-74. PubMed ID: 11924738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A statistical model for HIV-1 sequence classification using the subtype analyser (STAR).
    Myers RE; Gale CV; Harrison A; Takeuchi Y; Kellam P
    Bioinformatics; 2005 Sep; 21(17):3535-40. PubMed ID: 16046498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate prediction of enzyme mutant activity based on a multibody statistical potential.
    Masso M; Vaisman II
    Bioinformatics; 2007 Dec; 23(23):3155-61. PubMed ID: 17977887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of zinc-binding sites in proteins from sequence.
    Shu N; Zhou T; Hovmöller S
    Bioinformatics; 2008 Mar; 24(6):775-82. PubMed ID: 18245129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic basis of variation in tenofovir drug susceptibility in HIV-1.
    Murray RJ; Lewis FI; Miller MD; Brown AJ
    AIDS; 2008 Jun; 22(10):1113-23. PubMed ID: 18525256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative evaluation of three computerized algorithms for prediction of antiretroviral susceptibility from HIV type 1 genotype.
    Zazzi M; Romano L; Venturi G; Shafer RW; Reid C; Dal Bello F; Parolin C; Palù G; Valensin PE
    J Antimicrob Chemother; 2004 Feb; 53(2):356-60. PubMed ID: 14688053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mining complex genotypic features for predicting HIV-1 drug resistance.
    Saigo H; Uno T; Tsuda K
    Bioinformatics; 2007 Sep; 23(18):2455-62. PubMed ID: 17698858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.