These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16369085)

  • 1. Volume flow estimation in the precapillary mesenteric microvasculature in vivo and the principle of constant pressure gradient.
    Koutsiaris AG
    Biorheology; 2005; 42(6):479-91. PubMed ID: 16369085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo.
    Koutsiaris AG; Tachmitzi SV; Batis N; Kotoula MG; Karabatsas CH; Tsironi E; Chatzoulis DZ
    Biorheology; 2007; 44(5-6):375-86. PubMed ID: 18401076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood velocity pulse quantification in the human conjunctival pre-capillary arterioles.
    Koutsiaris AG; Tachmitzi SV; Papavasileiou P; Batis N; Kotoula MG; Giannoukas AD; Tsironi E
    Microvasc Res; 2010 Sep; 80(2):202-8. PubMed ID: 20478318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A velocity profile equation for blood flow in small arterioles and venules of small mammals in vivo and an evaluation based on literature data.
    Koutsiaris AG
    Clin Hemorheol Microcirc; 2009; 43(4):321-34. PubMed ID: 19996521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Velocity pulse measurements in the mesenteric arterioles of rabbits.
    Koutsiaris AG; Pogiatzi A
    Physiol Meas; 2004 Feb; 25(1):15-25. PubMed ID: 15005301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity pulse advances pressure pulse by close to 45 degrees in the rat pial arterioles.
    Seki J; Satomura Y; Ooi Y
    Biorheology; 2004; 41(1):45-52. PubMed ID: 14967889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of diameter variability along a microvessel segment on pressure drop.
    Kiani MF; Cokelet GR; Sarelius IH
    Microvasc Res; 1993 May; 45(3):219-32. PubMed ID: 8321139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A design principle for vascular beds: the effects of complex blood rheology.
    Alarcón T; Byrne HM; Maini PK
    Microvasc Res; 2005 May; 69(3):156-72. PubMed ID: 15896358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the principles of the vascular network branching.
    Gafiychuk VV; Lubashevsky IA
    J Theor Biol; 2001 Sep; 212(1):1-9. PubMed ID: 11527441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsatile blood flow, shear force, energy dissipation and Murray's Law.
    Painter PR; Edén P; Bengtsson HU
    Theor Biol Med Model; 2006 Aug; 3():31. PubMed ID: 16923189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiosensitivity of vascular tissue. I. Differential radiosensitivity of capillaries: a quantitative in vivo study.
    Dimitrievich GS; Fischer-Dzoga K; Griem ML
    Radiat Res; 1984 Sep; 99(3):511-35. PubMed ID: 6473711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemorheological disorders in the microcirculation following hemorrhage.
    Sordia T; Tatarishvili J; Varazashvili M; McHedlishvili G
    Clin Hemorheol Microcirc; 2004; 30(3-4):461-2. PubMed ID: 15258387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity profiles in the rat cerebral microvessels measured by optical coherence tomography.
    Seki J; Satomura Y; Ooi Y; Yanagida T; Seiyama A
    Clin Hemorheol Microcirc; 2006; 34(1-2):233-9. PubMed ID: 16543642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of big endothelin-1 in comparison with endothelin-1 on the microvascular blood flow velocity and diameter of rat mesentery in vivo.
    Abdelhalim MA
    Microvasc Res; 2006 Nov; 72(3):108-12. PubMed ID: 17028040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wall shear stress quantification in the human conjunctival pre-capillary arterioles in vivo.
    Koutsiaris AG; Tachmitzi SV; Batis N
    Microvasc Res; 2013 Jan; 85():34-9. PubMed ID: 23154279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamics of the omphalo-mesenteric arteries in stage 18 chicken embryos and "flow-structure" relations for the microcirculation.
    Lee JY; Lee SJ
    Microvasc Res; 2010 Dec; 80(3):402-11. PubMed ID: 20727902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic design of microfluidic manifolds based on a generalised Murray's law.
    Emerson DR; Cieślicki K; Gu X; Barber RW
    Lab Chip; 2006 Mar; 6(3):447-54. PubMed ID: 16511629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of pulsatile blood flow cycle in frog microvessels by image velocimetry.
    Singh SS; Singh M
    Med Biol Eng Comput; 2002 May; 40(3):269-72. PubMed ID: 12195971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational study on the influence of catheter-delivered intravascular probes on blood flow in a coronary artery model.
    Torii R; Wood NB; Hughes AD; Thom SA; Aguado-Sierra J; Davies JE; Francis DP; Parker KH; Xu XY
    J Biomech; 2007; 40(11):2501-9. PubMed ID: 17258750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.