These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

757 related articles for article (PubMed ID: 16369093)

  • 1. The integration of macromolecular diffraction data.
    Leslie AG
    Acta Crystallogr D Biol Crystallogr; 2006 Jan; 62(Pt 1):48-57. PubMed ID: 16369093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating macromolecular X-ray diffraction data with the graphical user interface iMosflm.
    Powell HR; Battye TGG; Kontogiannis L; Johnson O; Leslie AGW
    Nat Protoc; 2017 Jul; 12(7):1310-1325. PubMed ID: 28569763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined use of monochromatic and Laue diffraction techniques for macromolecular structure determination.
    Bartunik HD; Borchert T
    Acta Crystallogr A; 1989 Oct; 45 ( Pt 10)():718-26. PubMed ID: 2597367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-refinement method for snapshot serial crystallography.
    White TA
    Philos Trans R Soc Lond B Biol Sci; 2014 Jul; 369(1647):20130330. PubMed ID: 24914157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling of one-shot oscillation images with a reference data set.
    Hirata K; Yamashita E; Aoyama H; Muramoto K; Yoshikawa S; Tsukihara T
    J Synchrotron Radiat; 2004 Jan; 11(Pt 1):60-3. PubMed ID: 14646135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving signal strength in serial crystallography with DIALS geometry refinement.
    Brewster AS; Waterman DG; Parkhurst JM; Gildea RJ; Young ID; O'Riordan LJ; Yano J; Winter G; Evans G; Sauter NK
    Acta Crystallogr D Struct Biol; 2018 Sep; 74(Pt 9):877-894. PubMed ID: 30198898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian orientation estimate and structure information from sparse single-molecule x-ray diffraction images.
    Walczak M; Grubmüller H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022714. PubMed ID: 25215765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stationary crystal diffraction with a monochromatic convergent X-ray source and application for macromolecular crystal data collection.
    Ho JX; Snell EH; Sisk RC; Ruble JR; Carter DC; Owens SM; Gibson WM
    Acta Crystallogr D Biol Crystallogr; 1998 Mar; 54(Pt 2):200-14. PubMed ID: 9761885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New methods in time-resolved Laue pump-probe crystallography at synchrotron sources.
    Coppens P; Fournier B
    J Synchrotron Radiat; 2015 Mar; 22(2):280-7. PubMed ID: 25723930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of X-ray frames from macromolecular crystals using a ray-tracing approach.
    Diederichs K
    Acta Crystallogr D Biol Crystallogr; 2009 Jun; 65(Pt 6):535-42. PubMed ID: 19465767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray data collection from macromolecular crystals.
    Garman E; Sweet RM
    Methods Mol Biol; 2007; 364():63-94. PubMed ID: 17172761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data processing.
    Rossmann MG; van Beek CG
    Acta Crystallogr D Biol Crystallogr; 1999 Oct; 55(Pt 10):1631-40. PubMed ID: 10531511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-dispersive Laue diffraction by means of a pnCCD detector coupled to a CsI(Tl) scintillator using ultra-hard X-ray synchrotron radiation.
    Shokr M; Tosson A; Abboud A; Algashi A; Schlosser D; Hartmann R; Klaus M; Genzel C; Strüder L; Pietsch U
    J Synchrotron Radiat; 2019 Sep; 26(Pt 5):1612-1620. PubMed ID: 31490151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On effective and optical resolutions of diffraction data sets.
    Urzhumtseva L; Klaholz B; Urzhumtsev A
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):1921-34. PubMed ID: 24100312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing a crystal from an initial native dataset.
    Sawaya MR
    Methods Mol Biol; 2007; 364():95-120. PubMed ID: 17172762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling.
    Beilsten-Edmands J; Winter G; Gildea R; Parkhurst J; Waterman D; Evans G
    Acta Crystallogr D Struct Biol; 2020 Apr; 76(Pt 4):385-399. PubMed ID: 32254063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of patterns in diffraction intensities affected by radiation exposure.
    Borek D; Dauter Z; Otwinowski Z
    J Synchrotron Radiat; 2013 Jan; 20(Pt 1):37-48. PubMed ID: 23254654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoindexing diffraction images with iMosflm.
    Powell HR; Johnson O; Leslie AG
    Acta Crystallogr D Biol Crystallogr; 2013 Jul; 69(Pt 7):1195-203. PubMed ID: 23793145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The high-mosaicity illusion: revealing the true physical characteristics of macromolecular crystals.
    Bellamy HD; Snell EH; Lovelace J; Pokross M; Borgstahl GE
    Acta Crystallogr D Biol Crystallogr; 2000 Aug; 56(Pt 8):986-95. PubMed ID: 10944335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM.
    Battye TG; Kontogiannis L; Johnson O; Powell HR; Leslie AG
    Acta Crystallogr D Biol Crystallogr; 2011 Apr; 67(Pt 4):271-81. PubMed ID: 21460445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.