These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 16369693)
1. Genome-wide analysis of the expression profile of Saccharomyces cerevisiae in response to treatment with the plant isoflavone, wighteone, as a potential antifungal agent. Yin H; Zhao Y; Zhang Y; Zhang H; Xu L; Zou Z; Yang W; Cheng J; Zhou Y Biotechnol Lett; 2006 Jan; 28(2):99-105. PubMed ID: 16369693 [TBL] [Abstract][Full Text] [Related]
2. Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays. Minato T; Yoshida S; Ishiguro T; Shimada E; Mizutani S; Kobayashi O; Yoshimoto H Yeast; 2009 Mar; 26(3):147-65. PubMed ID: 19243081 [TBL] [Abstract][Full Text] [Related]
3. Exploring gene function and drug action using chemogenomic dosage assays. Ericson E; Hoon S; St Onge RP; Giaever G; Nislow C Methods Enzymol; 2010; 470():233-55. PubMed ID: 20946813 [TBL] [Abstract][Full Text] [Related]
4. Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis. Parveen M; Hasan MK; Takahashi J; Murata Y; Kitagawa E; Kodama O; Iwahashi H J Antimicrob Chemother; 2004 Jul; 54(1):46-55. PubMed ID: 15201226 [TBL] [Abstract][Full Text] [Related]
5. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. Kawahata M; Masaki K; Fujii T; Iefuji H FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514 [TBL] [Abstract][Full Text] [Related]
6. Redundancy reveals drugs in action. Oliver S Nat Genet; 1999 Mar; 21(3):245-6. PubMed ID: 10080166 [No Abstract] [Full Text] [Related]
7. Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae. Agarwal AK; Rogers PD; Baerson SR; Jacob MR; Barker KS; Cleary JD; Walker LA; Nagle DG; Clark AM J Biol Chem; 2003 Sep; 278(37):34998-5015. PubMed ID: 12824174 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide expression profile of the mnn2 Delta mutant of Saccharomyces cerevisiae. Corbacho I; Olivero I; Hohmann S; Sunnerhagen P; Hernández LM Antonie Van Leeuwenhoek; 2006; 89(3-4):485-94. PubMed ID: 16622789 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide expression profiling of the response to terbinafine in Candida albicans using a cDNA microarray analysis. Zeng YB; Qian YS; Ma L; Gu HN Chin Med J (Engl); 2007 May; 120(9):807-13. PubMed ID: 17531123 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and fungicidal activity of 3,5-dichloropyrazin-2(1H)-one derivatives. François IE; Cammue BP; Bresseleers S; Fleuren H; Hoornaert G; Mehta VP; Modha SG; Van der Eycken EV; Thevissen K Bioorg Med Chem Lett; 2009 Aug; 19(15):4064-6. PubMed ID: 19556127 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide analysis of the effects of location and number of stress response elements on gene expression in Saccharomyces cerevisiae. Yoshikawa K; Furusawa C; Hirasawa T; Shimizu H J Biosci Bioeng; 2008 Nov; 106(5):507-10. PubMed ID: 19111649 [TBL] [Abstract][Full Text] [Related]
15. Type I methionine aminopeptidase from Saccharomyces cerevisiae is a potential target for antifungal drug screening. Chen LL; Li J; Li JY; Luo QL; Mao WF; Shen Q; Nan FJ; Ye QZ Acta Pharmacol Sin; 2004 Jul; 25(7):907-14. PubMed ID: 15210064 [TBL] [Abstract][Full Text] [Related]