BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16370017)

  • 1. The fluorinase from Streptomyces cattleya is also a chlorinase.
    Deng H; Cobb SL; McEwan AR; McGlinchey RP; Naismith JH; O'Hagan D; Robinson DA; Spencer JB
    Angew Chem Int Ed Engl; 2006 Jan; 45(5):759-62. PubMed ID: 16370017
    [No Abstract]   [Full Text] [Related]  

  • 2. Substrate specificity in enzymatic fluorination. The fluorinase from Streptomyces cattleya accepts 2'-deoxyadenosine substrates.
    Cobb SL; Deng H; McEwan AR; Naismith JH; O'Hagan D; Robinson DA
    Org Biomol Chem; 2006 Apr; 4(8):1458-60. PubMed ID: 16604208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An enzymatic Finkelstein reaction: fluorinase catalyses direct halogen exchange.
    Lowe PT; Cobb SL; O'Hagan D
    Org Biomol Chem; 2019 Aug; 17(32):7493-7496. PubMed ID: 31364664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorinase mediated C-(18)F bond formation, an enzymatic tool for PET labelling.
    Deng H; Cobb SL; Gee AD; Lockhart A; Martarello L; McGlinchey RP; O'Hagan D; Onega M
    Chem Commun (Camb); 2006 Feb; (6):652-4. PubMed ID: 16446840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic fluorination in Streptomyces cattleya takes place with an inversion of configuration consistent with an SN2 reaction mechanism.
    Cadicamo CD; Courtieu J; Deng H; Meddour A; O'Hagan D
    Chembiochem; 2004 May; 5(5):685-90. PubMed ID: 15122641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by genome mining.
    Deng H; Ma L; Bandaranayaka N; Qin Z; Mann G; Kyeremeh K; Yu Y; Shepherd T; Naismith JH; O'Hagan D
    Chembiochem; 2014 Feb; 15(3):364-8. PubMed ID: 24449539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemistry: biosynthesis of an organofluorine molecule.
    O'Hagan D; Schaffrath C; Cobb SL; Hamilton JT; Murphy CD
    Nature; 2002 Mar; 416(6878):279. PubMed ID: 11907567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme Engineering Renders Chlorinase the Activity of Fluorinase.
    Jiang Y; Yao M; Niu H; Wang W; He J; Qiao B; Li B; Dong M; Xiao W; Yuan Y
    J Agric Food Chem; 2024 Jan; 72(2):1203-1212. PubMed ID: 38179953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro reconstituted biotransformation of 4-fluorothreonine from fluoride ion: application of the fluorinase.
    Deng H; Cross SM; McGlinchey RP; Hamilton JT; O'Hagan D
    Chem Biol; 2008 Dec; 15(12):1268-76. PubMed ID: 19101471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis by desolvation: the catalytic prowess of SAM-dependent halide-alkylating enzymes.
    Lohman DC; Edwards DR; Wolfenden R
    J Am Chem Soc; 2013 Oct; 135(39):14473-5. PubMed ID: 24041082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorometabolite biosynthesis and the fluorinase from Streptomyces cattleya.
    Deng H; O'Hagan D; Schaffrath C
    Nat Prod Rep; 2004 Dec; 21(6):773-84. PubMed ID: 15565254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology.
    Chan KK; O'Hagan D
    Methods Enzymol; 2012; 516():219-35. PubMed ID: 23034231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and characterization of a marine bacterial SAM-dependent chlorinase.
    Eustáquio AS; Pojer F; Noel JP; Moore BS
    Nat Chem Biol; 2008 Jan; 4(1):69-74. PubMed ID: 18059261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure and mechanism of a bacterial fluorinating enzyme.
    Dong C; Huang F; Deng H; Schaffrath C; Spencer JB; O'Hagan D; Naismith JH
    Nature; 2004 Feb; 427(6974):561-5. PubMed ID: 14765200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Engineered E. coli Strain for Direct in Vivo Fluorination.
    Markakis K; Lowe PT; Davison-Gates L; O'Hagan D; Rosser SJ; Elfick A
    Chembiochem; 2020 Jul; 21(13):1856-1860. PubMed ID: 32003116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenosylmethionine as a source of 5'-deoxyadenosyl radicals.
    Fontecave M; Mulliez E; Ollagnier-de-Choudens S
    Curr Opin Chem Biol; 2001 Oct; 5(5):506-11. PubMed ID: 11578923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fluorinase, the chlorinase and the duf-62 enzymes.
    Deng H; O'Hagan D
    Curr Opin Chem Biol; 2008 Oct; 12(5):582-92. PubMed ID: 18675376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New S-adenosyl-L-methionine analogues: synthesis and reactivity studies.
    Townsend AP; Roth S; Williams HE; Stylianou E; Thomas NR
    Org Lett; 2009 Jul; 11(14):2976-9. PubMed ID: 19552444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the molecular determinants of fluorinase specificity.
    Yeo WL; Chew X; Smith DJ; Chan KP; Sun H; Zhao H; Lim YH; Ang EL
    Chem Commun (Camb); 2017 Feb; 53(17):2559-2562. PubMed ID: 28184383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [N,1-(15)N2]-2'-deoxyadenosines.
    Terrazas M; Ariza X; Vilarrasa J
    Org Lett; 2005 Jun; 7(12):2477-9. PubMed ID: 15932227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.