BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16370387)

  • 1. Potential role of the antiproliferative cytokine beta-galactoside binding protein in cancer therapy.
    Mallucci L; Wells V
    Curr Opin Investig Drugs; 2005 Dec; 6(12):1228-33. PubMed ID: 16370387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Drug resistance mediated by survival- and growth-promoting signaling pathways].
    Fujita N
    Gan To Kagaku Ryoho; 2009 Apr; 36(4):567-71. PubMed ID: 19381028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythropoietin fails to interfere with the antiproliferative and cytotoxic effects of antitumor drugs.
    Gewirtz DA; Di X; Walker TD; Sawyer ST
    Clin Cancer Res; 2006 Apr; 12(7 Pt 1):2232-8. PubMed ID: 16609039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells.
    Xu W; Neckers L
    Clin Cancer Res; 2007 Mar; 13(6):1625-9. PubMed ID: 17363512
    [No Abstract]   [Full Text] [Related]  

  • 5. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors.
    Faivre S; Djelloul S; Raymond E
    Semin Oncol; 2006 Aug; 33(4):407-20. PubMed ID: 16890796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-sensitive signaling factors as a novel molecular targets for cancer therapy.
    Pennington JD; Wang TJ; Nguyen P; Sun L; Bisht K; Smart D; Gius D
    Drug Resist Updat; 2005 Oct; 8(5):322-30. PubMed ID: 16230045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Signal pathways of cell proliferation and death as targets of potential chemotherapeutics].
    Repický A; Jantová S; Milata V
    Ceska Slov Farm; 2008 Jan; 57(1):4-10. PubMed ID: 18383917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apoptosis in the development and treatment of cancer.
    Gerl R; Vaux DL
    Carcinogenesis; 2005 Feb; 26(2):263-70. PubMed ID: 15375012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic potential of nitric oxide in cancer.
    Bonavida B; Khineche S; Huerta-Yepez S; Garbán H
    Drug Resist Updat; 2006 Jun; 9(3):157-73. PubMed ID: 16822706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxin reductase as a novel molecular target for cancer therapy.
    Nguyen P; Awwad RT; Smart DD; Spitz DR; Gius D
    Cancer Lett; 2006 May; 236(2):164-74. PubMed ID: 15955621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overcoming drug-resistant cancer by a newly developed copper chelate through host-protective cytokine-mediated apoptosis.
    Mookerjee A; Mookerjee Basu J; Dutta P; Majumder S; Bhattacharyya S; Biswas J; Pal S; Mukherjee P; Raha S; Baral RN; Das T; Efferth T; Sa G; Roy S; Choudhuri SK
    Clin Cancer Res; 2006 Jul; 12(14 Pt 1):4339-49. PubMed ID: 16857809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations.
    Serra V; Markman B; Scaltriti M; Eichhorn PJ; Valero V; Guzman M; Botero ML; Llonch E; Atzori F; Di Cosimo S; Maira M; Garcia-Echeverria C; Parra JL; Arribas J; Baselga J
    Cancer Res; 2008 Oct; 68(19):8022-30. PubMed ID: 18829560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel oral indoline-sulfonamide agent, N-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-isonicotinamide (J30), exhibits potent activity against human cancer cells in vitro and in vivo through the disruption of microtubule.
    Liou JP; Hsu KS; Kuo CC; Chang CY; Chang JY
    J Pharmacol Exp Ther; 2007 Oct; 323(1):398-405. PubMed ID: 17660383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted induction of apoptosis for cancer therapy: current progress and prospects.
    Bremer E; van Dam G; Kroesen BJ; de Leij L; Helfrich W
    Trends Mol Med; 2006 Aug; 12(8):382-93. PubMed ID: 16798087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CUDC-305, a novel synthetic HSP90 inhibitor with unique pharmacologic properties for cancer therapy.
    Bao R; Lai CJ; Qu H; Wang D; Yin L; Zifcak B; Atoyan R; Wang J; Samson M; Forrester J; DellaRocca S; Xu GX; Tao X; Zhai HX; Cai X; Qian C
    Clin Cancer Res; 2009 Jun; 15(12):4046-57. PubMed ID: 19509149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autophagy signaling in cancer and its potential as novel target to improve anticancer therapy.
    Moretti L; Yang ES; Kim KW; Lu B
    Drug Resist Updat; 2007; 10(4-5):135-43. PubMed ID: 17627865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preclinical and clinical development of novel agents that target the protein kinase C family.
    Serova M; Ghoul A; Benhadji KA; Cvitkovic E; Faivre S; Calvo F; Lokiec F; Raymond E
    Semin Oncol; 2006 Aug; 33(4):466-78. PubMed ID: 16890801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estrogenic or antiestrogenic therapies for multiple myeloma?
    Sola B; Renoir JM
    Mol Cancer; 2007 Sep; 6():59. PubMed ID: 17888187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional inhibition of PI3K by the betaGBP molecule suppresses Ras-MAPK signalling to block cell proliferation.
    Wells V; Downward J; Mallucci L
    Oncogene; 2007 Dec; 26(55):7709-14. PubMed ID: 17603562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue transglutaminase-mediated chemoresistance in cancer cells.
    Verma A; Mehta K
    Drug Resist Updat; 2007; 10(4-5):144-51. PubMed ID: 17662645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.