BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 16370424)

  • 1. AEC for scanning digital mammography based on variation of scan velocity.
    Aslund M; Cederström B; Lundqvist M; Danielsson M
    Med Phys; 2005 Nov; 32(11):3367-74. PubMed ID: 16370424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image quality, threshold contrast and mean glandular dose in CR mammography.
    Jakubiak RR; Gamba HR; Neves EB; Peixoto JE
    Phys Med Biol; 2013 Sep; 58(18):6565-83. PubMed ID: 24002695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: a simulation study with an anthropomorphic breast phantom.
    Liu X; Lai CJ; Whitman GJ; Geiser WR; Shen Y; Yi Y; Shaw CC
    Med Phys; 2011 Dec; 38(12):6489-501. PubMed ID: 22149832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of compressed breast thickness and dose on lesion detectability in digital mammography: FROC study with simulated lesions in real mammograms.
    Salvagnini E; Bosmans H; Van Ongeval C; Van Steen A; Michielsen K; Cockmartin L; Struelens L; Marshall NW
    Med Phys; 2016 Sep; 43(9):5104. PubMed ID: 27587041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using simple mathematical functions to simulate pathological structures--input for digital mammography clinical trial.
    Ruschin M; Tingberg A; Båth M; Grahn A; Håkansson M; Hemdal B; Andersson I
    Radiat Prot Dosimetry; 2005; 114(1-3):424-31. PubMed ID: 15933150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grid removal and impact on population dose in full-field digital mammography.
    Gennaro G; Katz L; Souchay H; Klausz R; Alberelli C; di Maggio C
    Med Phys; 2007 Feb; 34(2):547-55. PubMed ID: 17388172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A framework for optimising the radiographic technique in digital X-ray imaging.
    Samei E; Dobbins JT; Lo JY; Tornai MP
    Radiat Prot Dosimetry; 2005; 114(1-3):220-9. PubMed ID: 15933112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical optimization of digital subtraction mammography with contrast medium using a commercial unit.
    Rosado-Méndez I; Palma BA; Brandan ME
    Med Phys; 2008 Dec; 35(12):5544-57. PubMed ID: 19175112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic exposure control for a slot scanning full field digital mammography system.
    Elbakri IA; Lakshminarayanan AV; Tesic MM
    Med Phys; 2005 Sep; 32(9):2763-70. PubMed ID: 16266089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objective assessment of image quality in conventional and digital mammography taking into account dynamic range.
    Pachoud M; Lepori D; Valley JF; Verdun FR
    Radiat Prot Dosimetry; 2005; 114(1-3):380-2. PubMed ID: 15933141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring automatic exposure control toward constant detectability in digital mammography.
    Salvagnini E; Bosmans H; Struelens L; Marshall NW
    Med Phys; 2015 Jul; 42(7):3834-47. PubMed ID: 26133585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-energy digital mammography for calcification imaging: scatter and nonuniformity corrections.
    Kappadath SC; Shaw CC
    Med Phys; 2005 Nov; 32(11):3395-408. PubMed ID: 16372415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a novel method of noise reduction using computer-simulated mammograms.
    Tischenko O; Hoeschen C; Dance DR; Hunt RA; Maidment AD; Bakic PR
    Radiat Prot Dosimetry; 2005; 114(1-3):81-4. PubMed ID: 15933085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo performance on the x-ray converter thickness in digital mammography using software breast models.
    Liaparinos P; Bliznakova K
    Med Phys; 2012 Nov; 39(11):6638-51. PubMed ID: 23127058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Radiation exposure in full-field digital mammography with a flat-panel x-ray detector based on amorphous silicon in comparison with conventional screen-film mammography].
    Hermann KP; Obenauer S; Grabbe E
    Rofo; 2000 Nov; 172(11):940-5. PubMed ID: 11142129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tomographic mammography using a limited number of low-dose cone-beam projection images.
    Wu T; Stewart A; Stanton M; McCauley T; Phillips W; Kopans DB; Moore RH; Eberhard JW; Opsahl-Ong B; Niklason L; Williams MB
    Med Phys; 2003 Mar; 30(3):365-80. PubMed ID: 12674237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using aluminum for scatter control in mammography: preliminary work using measurements of CNR and FOM.
    Al Khalifah K; Davidson R; Zhou A
    Radiol Phys Technol; 2020 Mar; 13(1):37-44. PubMed ID: 31749130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An examination of automatic exposure control regimes for two digital radiography systems.
    Marshall NW
    Phys Med Biol; 2009 Aug; 54(15):4645-70. PubMed ID: 19590115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system.
    Zhao B; Zhao W
    Med Phys; 2008 May; 35(5):1978-87. PubMed ID: 18561674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.