These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 16371336)

  • 1. Flowing biofilms as a transport mechanism for biomass through porous media under laminar and turbulent conditions in a laboratory reactor system.
    Stoodley P; Dodds I; De Beer D; Scott HL; Boyle JD
    Biofouling; 2005; 21(3-4):161-8. PubMed ID: 16371336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media.
    Thullner M; Baveye P
    Biotechnol Bioeng; 2008 Apr; 99(6):1337-51. PubMed ID: 18023059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of different concentrations of ortho-phthalaldehyde on biofilms formed by Pseudomonas fluorescens under different flow conditions.
    Simões M; Pereira MO; Vieira MJ
    Biofouling; 2003 Oct; 19(5):287-95. PubMed ID: 14650083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.
    Teodósio JS; Simões M; Melo LF; Mergulhão FJ
    Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective imaging of biofilms in porous media by NMR relaxation.
    Hoskins BC; Fevang L; Majors PD; Sharma MM; Georgiou G
    J Magn Reson; 1999 Jul; 139(1):67-73. PubMed ID: 10388585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm morphology as related to the porous media clogging.
    Kim JW; Choi H; Pachepsky YA
    Water Res; 2010 Feb; 44(4):1193-201. PubMed ID: 19604533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofilm development and the dynamics of preferential flow paths in porous media.
    Bottero S; Storck T; Heimovaara TJ; van Loosdrecht MC; Enzien MV; Picioreanu C
    Biofouling; 2013; 29(9):1069-86. PubMed ID: 24028574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real time monitoring of biofilm development under flow conditions in porous media.
    Bozorg A; Gates ID; Sen A
    Biofouling; 2012; 28(9):937-51. PubMed ID: 22963147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology and behavior of Pseudomonas fluorescens single and dual strain biofilms under diverse hydrodynamics stresses.
    Simões M; Simões LC; Vieira MJ
    Int J Food Microbiol; 2008 Dec; 128(2):309-16. PubMed ID: 18951643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow.
    Stoodley P; Lewandowski Z; Boyle JD; Lappin-Scott HM
    Environ Microbiol; 1999 Oct; 1(5):447-55. PubMed ID: 11207765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms.
    Simões M; Pereira MO; Sillankorva S; Azeredo J; Vieira MJ
    Biofouling; 2007; 23(3-4):249-58. PubMed ID: 17653934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions.
    Mampel J; Spirig T; Weber SS; Haagensen JA; Molin S; Hilbi H
    Appl Environ Microbiol; 2006 Apr; 72(4):2885-95. PubMed ID: 16597995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of drinking water biofilm in flow/non-flow conditions.
    Manuel CM; Nunes OC; Melo LF
    Water Res; 2007 Feb; 41(3):551-62. PubMed ID: 17184812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between laponite and microbial biofilms in porous media: implications for colloid transport and biofilm stability.
    Leon-Morales CF; Leis AP; Strathmann M; Flemming HC
    Water Res; 2004 Sep; 38(16):3614-26. PubMed ID: 15325188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of growth history on sloughing and erosion from biofilms.
    Telgmann U; Horn H; Morgenroth E
    Water Res; 2004 Oct; 38(17):3671-84. PubMed ID: 15350418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Architectural adaptation and protein expression patterns of Salmonella enterica serovar Enteritidis biofilms under laminar flow conditions.
    Mangalappalli-Illathu AK; Lawrence JR; Swerhone GD; Korber DR
    Int J Food Microbiol; 2008 Mar; 123(1-2):109-20. PubMed ID: 18261816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colonization dynamics of biofilm-associated ciliate morphotypes at different flow velocities.
    Risse-Buhl U; Küsel K
    Eur J Protistol; 2009 Jan; 45(1):64-76. PubMed ID: 19004624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes.
    Simões M; Pereira MO; Vieira MJ
    Water Res; 2005; 39(2-3):478-86. PubMed ID: 15644256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of biofilm permeability on bio-clogging of porous media.
    Pintelon TR; Picioreanu C; Loosdrecht MC; Johns ML
    Biotechnol Bioeng; 2012 Apr; 109(4):1031-42. PubMed ID: 22095039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online assessment of biofilm development, sloughing and forced detachment in tube reactor by means of magnetic resonance microscopy.
    Wagner M; Manz B; Volke F; Neu TR; Horn H
    Biotechnol Bioeng; 2010 Sep; 107(1):172-81. PubMed ID: 20506514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.