These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
673 related articles for article (PubMed ID: 16371401)
1. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. Driscoll SP; Prins A; Olmos E; Kunert KJ; Foyer CH J Exp Bot; 2006; 57(2):381-90. PubMed ID: 16371401 [TBL] [Abstract][Full Text] [Related]
2. Variations in the dorso-ventral organization of leaf structure and Kranz anatomy coordinate the control of photosynthesis and associated signalling at the whole leaf level in monocotyledonous species. Soares-Cordeiro AS; Driscoll SP; Pellny TK; Olmos E; Arrabaça MC; Foyer CH Plant Cell Environ; 2009 Dec; 32(12):1833-44. PubMed ID: 19712063 [TBL] [Abstract][Full Text] [Related]
3. Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L. Wang Y; Noguchi K; Terashima I Plant Cell Environ; 2008 Sep; 31(9):1307-16. PubMed ID: 18537998 [TBL] [Abstract][Full Text] [Related]
4. Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpaxP. deltoides). Miyazawa S; Livingston NJ; Turpin DH J Exp Bot; 2006; 57(2):373-80. PubMed ID: 16172139 [TBL] [Abstract][Full Text] [Related]
5. Specification of adaxial cell fate during maize leaf development. Juarez MT; Twigg RW; Timmermans MC Development; 2004 Sep; 131(18):4533-44. PubMed ID: 15342478 [TBL] [Abstract][Full Text] [Related]
6. Systemic signalling of environmental cues in Arabidopsis leaves. Coupe SA; Palmer BG; Lake JA; Overy SA; Oxborough K; Woodward FI; Gray JE; Quick WP J Exp Bot; 2006; 57(2):329-41. PubMed ID: 16330523 [TBL] [Abstract][Full Text] [Related]
7. Characterization of juvenile and adult leaves of Eucalyptus globulus showing distinct heteroblastic development: photosynthesis and volatile isoprenoids. Velikova V; Loreto F; Brilli F; Stefanov D; Yordanov I Plant Biol (Stuttg); 2008 Jan; 10(1):55-64. PubMed ID: 18211547 [TBL] [Abstract][Full Text] [Related]
8. Difference in light-induced increase in ploidy level and cell size between adaxial and abaxial epidermal pavement cells of Phaseolus vulgaris primary leaves. Kinoshita I; Sanbe A; Yokomura EI J Exp Bot; 2008; 59(6):1419-30. PubMed ID: 18375604 [TBL] [Abstract][Full Text] [Related]
9. Differential adaptation of two varieties of common bean to abiotic stress: II. Acclimation of photosynthesis. Wentworth M; Murchie EH; Gray JE; Villegas D; Pastenes C; Pinto M; Horton P J Exp Bot; 2006; 57(3):699-709. PubMed ID: 16415331 [TBL] [Abstract][Full Text] [Related]
10. Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orientation and growth with CO2 enrichment in the C4 species Paspalum dilatatum. Soares AS; Driscoll SP; Olmos E; Harbinson J; Arrabaça MC; Foyer CH New Phytol; 2008; 177(1):186-198. PubMed ID: 17850248 [TBL] [Abstract][Full Text] [Related]
11. Manipulation of light and CO2 environments of the primary leaves of bean (Phaseolus vulgaris L.) affects photosynthesis in both the primary and the first trifoliate leaves: involvement of systemic regulation. Araya T; Noguchi K; Terashima I Plant Cell Environ; 2008 Jan; 31(1):50-61. PubMed ID: 17944816 [TBL] [Abstract][Full Text] [Related]
12. Stomatal crypts may facilitate diffusion of CO(2) to adaxial mesophyll cells in thick sclerophylls. Hassiotou F; Evans JR; Ludwig M; Veneklaas EJ Plant Cell Environ; 2009 Nov; 32(11):1596-611. PubMed ID: 19627563 [TBL] [Abstract][Full Text] [Related]
13. Development of C4 photosynthesis in sorghum leaves grown under free-air CO2 enrichment (FACE). Cousins AB; Adam NR; Wall GW; Kimball BA; Pinter PJ; Ottman MJ; Leavitt SW; Webber AN J Exp Bot; 2003 Aug; 54(389):1969-75. PubMed ID: 12837815 [TBL] [Abstract][Full Text] [Related]
14. Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization. Fila G; Badeck FW; Meyer S; Cerovic Z; Ghashghaie J J Exp Bot; 2006; 57(11):2687-95. PubMed ID: 16837534 [TBL] [Abstract][Full Text] [Related]
15. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758 [TBL] [Abstract][Full Text] [Related]
16. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation. Chen GY; Yong ZH; Liao Y; Zhang DY; Chen Y; Zhang HB; Chen J; Zhu JG; Xu DQ Plant Cell Physiol; 2005 Jul; 46(7):1036-45. PubMed ID: 15840641 [TBL] [Abstract][Full Text] [Related]
17. Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity. Elagöz V; Han SS; Manning WJ Environ Pollut; 2006 Apr; 140(3):395-405. PubMed ID: 16202494 [TBL] [Abstract][Full Text] [Related]
18. Stomata on the abaxial and adaxial leaf surfaces contribute differently to leaf gas exchange and photosynthesis in wheat. Wall S; Vialet-Chabrand S; Davey P; Van Rie J; Galle A; Cockram J; Lawson T New Phytol; 2022 Sep; 235(5):1743-1756. PubMed ID: 35586964 [TBL] [Abstract][Full Text] [Related]
19. Canopy profiles of photosynthetic parameters under elevated CO2 and N fertilization in a poplar plantation. Calfapietra C; Tulva I; Eensalu E; Perez M; De Angelis P; Scarascia-Mugnozza G; Kull O Environ Pollut; 2005 Oct; 137(3):525-35. PubMed ID: 16005764 [TBL] [Abstract][Full Text] [Related]
20. Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment. Stanciel K; Mortley DG; Hileman DR; Loretan PA; Bonsi CK; Hill WA HortScience; 2000 Feb; 35(1):49-52. PubMed ID: 11725790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]