BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 16371472)

  • 1. Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin.
    Capitanio M; Canepari M; Cacciafesta P; Lombardi V; Cicchi R; Maffei M; Pavone FS; Bottinelli R
    Proc Natl Acad Sci U S A; 2006 Jan; 103(1):87-92. PubMed ID: 16371472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of the release of myosin heads from actin in rapidly contracting muscle fibers.
    Cooke R; White H; Pate E
    Biophys J; 1994 Mar; 66(3 Pt 1):778-88. PubMed ID: 8011910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition.
    He ZH; Bottinelli R; Pellegrino MA; Ferenczi MA; Reggiani C
    Biophys J; 2000 Aug; 79(2):945-61. PubMed ID: 10920025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force and number of myosin motors during muscle shortening and the coupling with the release of the ATP hydrolysis products.
    Caremani M; Melli L; Dolfi M; Lombardi V; Linari M
    J Physiol; 2015 Aug; 593(15):3313-32. PubMed ID: 26041599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What limits the velocity of fast-skeletal muscle contraction in mammals?
    Nyitrai M; Rossi R; Adamek N; Pellegrino MA; Bottinelli R; Geeves MA
    J Mol Biol; 2006 Jan; 355(3):432-42. PubMed ID: 16325202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of stereocilia adaptation based on single molecule mechanical studies of myosin I.
    Batters C; Wallace MI; Coluccio LM; Molloy JE
    Philos Trans R Soc Lond B Biol Sci; 2004 Dec; 359(1452):1895-905. PubMed ID: 15647165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle myosin II structure and function.
    Lutz GJ; Lieber RL
    Exerc Sport Sci Rev; 1999; 27():63-77. PubMed ID: 10791014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A physical model of ATP-induced actin-myosin movement in vitro.
    Tawada K; Sekimoto K
    Biophys J; 1991 Feb; 59(2):343-56. PubMed ID: 1826220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The function of two heads of myosin in muscle contraction.
    Inoue A; Tanii I; Miyata M; Arata T
    Adv Exp Med Biol; 1988; 226():227-35. PubMed ID: 2970208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repriming the actomyosin crossbridge cycle.
    Steffen W; Sleep J
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12904-9. PubMed ID: 15326285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle.
    Yanagida T; Arata T; Oosawa F
    Nature; 1985 Jul 25-31; 316(6026):366-9. PubMed ID: 4022127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The motor protein myosin-I produces its working stroke in two steps.
    Veigel C; Coluccio LM; Jontes JD; Sparrow JC; Milligan RA; Molloy JE
    Nature; 1999 Apr; 398(6727):530-3. PubMed ID: 10206648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sarcomere lattice geometry influences cooperative myosin binding in muscle.
    Tanner BC; Daniel TL; Regnier M
    PLoS Comput Biol; 2007 Jul; 3(7):e115. PubMed ID: 17630823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct visualization by electron microscopy of the weakly bound intermediates in the actomyosin adenosine triphosphatase cycle.
    Pollard TD; Bhandari D; Maupin P; Wachsstock D; Weeds AG; Zot HG
    Biophys J; 1993 Feb; 64(2):454-71. PubMed ID: 8457671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges.
    Brizendine RK; Alcala DB; Carter MS; Haldeman BD; Facemyer KC; Baker JE; Cremo CR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11235-40. PubMed ID: 26294254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. II. Elementary steps affected by the spacing change.
    Zhao Y; Kawai M
    Biophys J; 1993 Jan; 64(1):197-210. PubMed ID: 7679297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential myosin light chain isoforms and energy transduction in skeletal muscle fibers.
    Bottinelli R; Reggiani C
    Biophys J; 1995 Apr; 68(4 Suppl):227S. PubMed ID: 7787081
    [No Abstract]   [Full Text] [Related]  

  • 19. The motor mechanism of myosin V: insights for muscle contraction.
    Sweeney HL; Houdusse A
    Philos Trans R Soc Lond B Biol Sci; 2004 Dec; 359(1452):1829-41. PubMed ID: 15647159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using optical tweezers to relate the chemical and mechanical cross-bridge cycles.
    Steffen W; Sleep J
    Philos Trans R Soc Lond B Biol Sci; 2004 Dec; 359(1452):1857-65. PubMed ID: 15647161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.