BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 16371472)

  • 61. The ATPase cycle of human muscle myosin II isoforms: Adaptation of a single mechanochemical cycle for different physiological roles.
    Johnson CA; Walklate J; Svicevic M; Mijailovich SM; Vera C; Karabina A; Leinwand LA; Geeves MA
    J Biol Chem; 2019 Sep; 294(39):14267-14278. PubMed ID: 31387944
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The structural basis of muscle contraction.
    Holmes KC; Geeves MA
    Philos Trans R Soc Lond B Biol Sci; 2000 Apr; 355(1396):419-31. PubMed ID: 10836495
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The myosin cross-bridge cycle and its control by twitchin phosphorylation in catch muscle.
    Butler TM; Narayan SR; Mooers SU; Hartshorne DJ; Siegman MJ
    Biophys J; 2001 Jan; 80(1):415-26. PubMed ID: 11159412
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In vitro motility speed of slow myosin extracted from single soleus fibres from young and old rats.
    Höök P; Li X; Sleep J; Hughes S; Larsson L
    J Physiol; 1999 Oct; 520 Pt 2(Pt 2):463-71. PubMed ID: 10523415
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Forces measured with micro-fabricated cantilevers during actomyosin interactions produced by filaments containing different myosin isoforms and loop 1 structures.
    Kalganov A; Shalabi N; Zitouni N; Kachmar LH; Lauzon AM; Rassier DE
    Biochim Biophys Acta; 2013 Mar; 1830(3):2710-9. PubMed ID: 23671932
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Induced potential model of muscular contraction mechanism and myosin molecular structure.
    Mitsui T
    Adv Biophys; 1999; 36():107-58. PubMed ID: 10463074
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Poorly understood aspects of striated muscle contraction.
    Månsson A; Rassier D; Tsiavaliaris G
    Biomed Res Int; 2015; 2015():245154. PubMed ID: 25961006
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The molecular basis of muscle contraction.
    Holmes KC; Goody RS
    Ciba Found Symp; 1983; 93():139-55. PubMed ID: 6551226
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Actomyosin interactions in a novel single muscle fiber in vitro motility assay.
    Hook P; Larsson L
    J Muscle Res Cell Motil; 2000 May; 21(4):357-65. PubMed ID: 11032346
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Actomyosin kinetics of pure fast and slow rat myosin isoforms studied by in vitro motility assay approach.
    Canepari M; Maffei M; Longa E; Geeves M; Bottinelli R
    Exp Physiol; 2012 Jul; 97(7):873-81. PubMed ID: 22467761
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.
    Müller M; Diensthuber RP; Chizhov I; Claus P; Heissler SM; Preller M; Taft MH; Manstein DJ
    PLoS One; 2013; 8(7):e70636. PubMed ID: 23923011
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Direct demonstration of the cross-bridge recovery stroke in muscle thick filaments in aqueous solution by using the hydration chamber.
    Sugi H; Minoda H; Inayoshi Y; Yumoto F; Miyakawa T; Miyauchi Y; Tanokura M; Akimoto T; Kobayashi T; Chaen S; Sugiura S
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17396-401. PubMed ID: 18987316
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A model of muscle contraction based on the Langevin equation with actomyosin potentials.
    Tamura Y; Ito A; Saito M
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):273-283. PubMed ID: 27472485
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle.
    Piazzesi G; Lombardi V
    Biophys J; 1995 May; 68(5):1966-79. PubMed ID: 7612839
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Myosin isoforms and the mechanochemical cross-bridge cycle.
    Walklate J; Ujfalusi Z; Geeves MA
    J Exp Biol; 2016 Jan; 219(Pt 2):168-74. PubMed ID: 26792327
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Energy transduction optical sensor in skeletal myosin.
    Burghardt TP; Park S; Dong WJ; Xing J; Cheung HC; Ajtai K
    Biochemistry; 2003 May; 42(19):5877-84. PubMed ID: 12741846
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Kinetic analysis of the slow skeletal myosin MHC-1 isoform from bovine masseter muscle.
    Bloemink MJ; Adamek N; Reggiani C; Geeves MA
    J Mol Biol; 2007 Nov; 373(5):1184-97. PubMed ID: 17900618
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Slip sliding away: load-dependence of velocity generated by skeletal muscle myosin molecules in the laser trap.
    Debold EP; Patlak JB; Warshaw DM
    Biophys J; 2005 Nov; 89(5):L34-6. PubMed ID: 16169988
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Compliant realignment of binding sites in muscle: transient behavior and mechanical tuning.
    Daniel TL; Trimble AC; Chase PB
    Biophys J; 1998 Apr; 74(4):1611-21. PubMed ID: 9545027
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Letter: A molecular explanation of the role of actin in acceleration of the myosin-catalysed ATP hydrolysis in vertebrate striated muscles.
    Gray BF; Gonda I
    J Theor Biol; 1975 Feb; 49(2):493-7. PubMed ID: 1121191
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.