These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 16371472)

  • 81. Invited Review: plasticity and energetic demands of contraction in skeletal and cardiac muscle.
    Sieck GC; Regnier M
    J Appl Physiol (1985); 2001 Mar; 90(3):1158-64. PubMed ID: 11181631
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The properties of the actin-myosin interaction in the heart muscle depend on the isoforms of myosin but not of α-actin.
    Kopylova G; Nabiev S; Nikitina L; Shchepkin D; Bershitsky S
    Biochem Biophys Res Commun; 2016 Aug; 476(4):648-653. PubMed ID: 27264951
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The cross-bridge mechanism studied by flash photolysis of caged ATP in skeletal muscle fibers.
    Horiuti K
    Jpn J Physiol; 1997 Oct; 47(5):405-15. PubMed ID: 9504128
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The swinging lever-arm hypothesis of muscle contraction.
    Holmes KC
    Curr Biol; 1997 Feb; 7(2):R112-8. PubMed ID: 9081660
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Muscle contraction and free energy transduction in biological systems.
    Eisenberg E; Hill TL
    Science; 1985 Mar; 227(4690):999-1006. PubMed ID: 3156404
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A simple model of cardiac muscle for multiscale simulation: Passive mechanics, crossbridge kinetics and calcium regulation.
    Syomin FA; Tsaturyan AK
    J Theor Biol; 2017 May; 420():105-116. PubMed ID: 28223172
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The Qdot-labeled actin super-resolution motility assay measures low-duty cycle muscle myosin step size.
    Wang Y; Ajtai K; Burghardt TP
    Biochemistry; 2013 Mar; 52(9):1611-21. PubMed ID: 23383646
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin.
    Ishijima A; Kojima H; Funatsu T; Tokunaga M; Higuchi H; Tanaka H; Yanagida T
    Cell; 1998 Jan; 92(2):161-71. PubMed ID: 9458041
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Acto-Myosin Cross-Bridge Stiffness Depends on the Nucleotide State of Myosin II.
    Wang T; Brenner B; Nayak A; Amrute-Nayak M
    Nano Lett; 2020 Oct; 20(10):7506-7512. PubMed ID: 32897722
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Simulation of the rapid regeneration of the actin-myosin working stroke with a tight coupling model of muscle contraction.
    Piazzesi G; Lombardi V
    J Muscle Res Cell Motil; 1996 Feb; 17(1):45-53. PubMed ID: 8740431
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A kinetic mechanism for the fast movement of Chara myosin.
    Kimura Y; Toyoshima N; Hirakawa N; Okamoto K; Ishijima A
    J Mol Biol; 2003 May; 328(4):939-50. PubMed ID: 12729766
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Reconciling the working strokes of a single head of skeletal muscle myosin estimated from laser-trap experiments and crystal structures.
    Sleep J; Lewalle A; Smith D
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1278-82. PubMed ID: 16428290
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Fluorescence resonance energy transfer in acto-myosin complexes.
    Yengo CM; Berger CL
    Results Probl Cell Differ; 2002; 36():21-30. PubMed ID: 11892281
    [No Abstract]   [Full Text] [Related]  

  • 94. Phosphorylation of myosin regulatory light chain has minimal effect on kinetics and distribution of orientations of cross bridges of rabbit skeletal muscle.
    Duggal D; Nagwekar J; Rich R; Midde K; Fudala R; Gryczynski I; Borejdo J
    Am J Physiol Regul Integr Comp Physiol; 2014 Feb; 306(4):R222-33. PubMed ID: 24285364
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Cross-bridge kinetics in respiratory muscles.
    Sieck GC; Prakash YS
    Eur Respir J; 1997 Sep; 10(9):2147-58. PubMed ID: 9311518
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Force and kinetics of fast and slow muscle myosin determined with a synthetic sarcomere-like nanomachine.
    Buonfiglio V; Pertici I; Marcello M; Morotti I; Caremani M; Reconditi M; Linari M; Fanelli D; Lombardi V; Bianco P
    Commun Biol; 2024 Mar; 7(1):361. PubMed ID: 38521889
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Temperature dependence and Arrhenius activation energy of F-actin velocity generated in vitro by skeletal myosin.
    Anson M
    J Mol Biol; 1992 Apr; 224(4):1029-38. PubMed ID: 1533250
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Motion of myosin head domains during activation and force development in skeletal muscle.
    Reconditi M; Brunello E; Linari M; Bianco P; Narayanan T; Panine P; Piazzesi G; Lombardi V; Irving M
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):7236-40. PubMed ID: 21482782
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Mathematical simulation of muscle cross-bridge cycle and force-velocity relationship.
    Chin L; Yue P; Feng JJ; Seow CY
    Biophys J; 2006 Nov; 91(10):3653-63. PubMed ID: 16935957
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Nonlinear cross-bridge elasticity and post-power-stroke events in fast skeletal muscle actomyosin.
    Persson M; Bengtsson E; ten Siethoff L; Månsson A
    Biophys J; 2013 Oct; 105(8):1871-81. PubMed ID: 24138863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.