These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 16371889)
1. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Johannessen W; Elliott DM Spine (Phila Pa 1976); 2005 Dec; 30(24):E724-9. PubMed ID: 16371889 [TBL] [Abstract][Full Text] [Related]
2. Correlating material properties with tissue composition in enzymatically digested bovine annulus fibrosus and nucleus pulposus tissue. Perie DS; Maclean JJ; Owen JP; Iatridis JC Ann Biomed Eng; 2006 May; 34(5):769-77. PubMed ID: 16598654 [TBL] [Abstract][Full Text] [Related]
3. Translational challenges for the development of a novel nucleus pulposus substitute: Experimental results from biomechanical and in vivo studies. Detiger SE; de Bakker JY; Emanuel KS; Schmitz M; Vergroesen PP; van der Veen AJ; Mazel C; Smit TH J Biomater Appl; 2016 Feb; 30(7):983-94. PubMed ID: 26494611 [TBL] [Abstract][Full Text] [Related]
4. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. Périé D; Korda D; Iatridis JC J Biomech; 2005 Nov; 38(11):2164-71. PubMed ID: 16154403 [TBL] [Abstract][Full Text] [Related]
5. Noninvasive quantification of human nucleus pulposus pressure with use of T1rho-weighted magnetic resonance imaging. Nguyen AM; Johannessen W; Yoder JH; Wheaton AJ; Vresilovic EJ; Borthakur A; Elliott DM J Bone Joint Surg Am; 2008 Apr; 90(4):796-802. PubMed ID: 18381318 [TBL] [Abstract][Full Text] [Related]
6. Linear and Nonlinear Biphasic Mechanical Properties of Goat IVDs Under Different Swelling Conditions in Confined Compression. Rasoulian A; Vakili-Tahami F; Smit TH Ann Biomed Eng; 2021 Dec; 49(12):3296-3309. PubMed ID: 34480262 [TBL] [Abstract][Full Text] [Related]
7. Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Iatridis JC; Weidenbaum M; Setton LA; Mow VC Spine (Phila Pa 1976); 1996 May; 21(10):1174-84. PubMed ID: 8727192 [TBL] [Abstract][Full Text] [Related]
8. Human intervertebral disc internal strain in compression: the effect of disc region, loading position, and degeneration. O'Connell GD; Vresilovic EJ; Elliott DM J Orthop Res; 2011 Apr; 29(4):547-55. PubMed ID: 21337394 [TBL] [Abstract][Full Text] [Related]
9. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent. Jacobs NT; Cortes DH; Peloquin JM; Vresilovic EJ; Elliott DM J Biomech; 2014 Aug; 47(11):2540-6. PubMed ID: 24998992 [TBL] [Abstract][Full Text] [Related]
10. Nucleotomy reduces the effects of cyclic compressive loading with unloaded recovery on human intervertebral discs. Showalter BL; Malhotra NR; Vresilovic EJ; Elliott DM J Biomech; 2014 Aug; 47(11):2633-40. PubMed ID: 24957922 [TBL] [Abstract][Full Text] [Related]
11. Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. Iatridis JC; Setton LA; Foster RJ; Rawlins BA; Weidenbaum M; Mow VC J Biomech; 1998 Jun; 31(6):535-44. PubMed ID: 9755038 [TBL] [Abstract][Full Text] [Related]
12. Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering. Cortes DH; Jacobs NT; DeLucca JF; Elliott DM J Biomech; 2014 Jun; 47(9):2088-94. PubMed ID: 24438768 [TBL] [Abstract][Full Text] [Related]
13. Numerical analysis of the influence of nucleus pulposus removal on the biomechanical behavior of a lumbar motion segment. Huang J; Yan H; Jian F; Wang X; Li H Comput Methods Biomech Biomed Engin; 2015; 18(14):1516-24. PubMed ID: 24893132 [TBL] [Abstract][Full Text] [Related]
14. Changes in mRNA and protein levels of proteoglycans of the anulus fibrosus and nucleus pulposus during intervertebral disc degeneration. Cs-Szabo G; Ragasa-San Juan D; Turumella V; Masuda K; Thonar EJ; An HS Spine (Phila Pa 1976); 2002 Oct; 27(20):2212-9. PubMed ID: 12394896 [TBL] [Abstract][Full Text] [Related]
16. The effect of nucleus implant parameters on the compressive mechanics of the lumbar intervertebral disc: a finite element study. Joshi A; Massey CJ; Karduna A; Vresilovic E; Marcolongo M J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):596-607. PubMed ID: 19180527 [TBL] [Abstract][Full Text] [Related]
17. Compressive properties of fibrous repair tissue compared to nucleus and annulus. Freeman AL; Buttermann GR; Beaubien BP; Rochefort WE J Biomech; 2013 Jun; 46(10):1714-21. PubMed ID: 23643028 [TBL] [Abstract][Full Text] [Related]
18. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Acaroglu ER; Iatridis JC; Setton LA; Foster RJ; Mow VC; Weidenbaum M Spine (Phila Pa 1976); 1995 Dec; 20(24):2690-701. PubMed ID: 8747247 [TBL] [Abstract][Full Text] [Related]
19. In vivo remodeling of intervertebral discs in response to short- and long-term dynamic compression. Wuertz K; Godburn K; MacLean JJ; Barbir A; Donnelly JS; Roughley PJ; Alini M; Iatridis JC J Orthop Res; 2009 Sep; 27(9):1235-42. PubMed ID: 19274755 [TBL] [Abstract][Full Text] [Related]
20. An in vitro animal study of the biomechanical responses of anulus fibrosus with aging. Park C; Kim YJ; Lee CS; An K; Shin HJ; Lee CH; Kim CH; Shin JW Spine (Phila Pa 1976); 2005 May; 30(10):E259-65. PubMed ID: 15897815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]