These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 1637289)
1. Long-chain acyl-CoA ester intermediates of beta-oxidation of mono- and di-carboxylic fatty acids by extracts of Corynebacterium sp. strain 7E1C. Broadway NM; Dickinson FM; Ratledge C Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):117-22. PubMed ID: 1637289 [TBL] [Abstract][Full Text] [Related]
2. Quantitation of acyl-CoA and acylcarnitine esters accumulated during abnormal mitochondrial fatty acid oxidation. Kler RS; Jackson S; Bartlett K; Bindoff LA; Eaton S; Pourfarzam M; Frerman FE; Goodman SI; Watmough NJ; Turnbull DM J Biol Chem; 1991 Dec; 266(34):22932-8. PubMed ID: 1744086 [TBL] [Abstract][Full Text] [Related]
3. Comparison of metabolic fluxes of cis-5-enoyl-CoA and saturated acyl-CoA through the beta-oxidation pathway. Tserng KY; Chen LS; Jin SJ Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):23-8. PubMed ID: 7717980 [TBL] [Abstract][Full Text] [Related]
4. Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals. Mannaerts GP; Van Veldhoven PP; Casteels M Cell Biochem Biophys; 2000; 32 Spring():73-87. PubMed ID: 11330072 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial β-oxidation of saturated fatty acids in humans. Adeva-Andany MM; Carneiro-Freire N; Seco-Filgueira M; Fernández-Fernández C; Mouriño-Bayolo D Mitochondrion; 2019 May; 46():73-90. PubMed ID: 29551309 [TBL] [Abstract][Full Text] [Related]
6. Identification of beta-oxidation and thioesterase activities in Staphylococcus carnosus 833 strain. Engelvin G; Feron G; Perrin C; Mollé D; Talon R FEMS Microbiol Lett; 2000 Sep; 190(1):115-20. PubMed ID: 10981700 [TBL] [Abstract][Full Text] [Related]
7. Participation of peroxisomes in the metabolism of xenobiotic acyl compounds: comparison between peroxisomal and mitochondrial beta-oxidation of omega-phenyl fatty acids in rat liver. Yamada J; Ogawa S; Horie S; Watanabe T; Suga T Biochim Biophys Acta; 1987 Sep; 921(2):292-301. PubMed ID: 3651489 [TBL] [Abstract][Full Text] [Related]
8. Oxidation of medium-chain acyl-CoA esters by extracts of Aspergillus niger: enzymology and characterization of intermediates by HPLC. Baltazar MF; Dickinson FM; Ratledge C Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():271-278. PubMed ID: 10206707 [TBL] [Abstract][Full Text] [Related]
9. Enzymatic assay for 3-hydroxyacyl-CoA and 2-trans-enoyl-CoA intermediates of beta-oxidation. Latipää PM; Hassinen IE; Hiltunen JK Anal Biochem; 1988 May; 171(1):67-72. PubMed ID: 3407922 [TBL] [Abstract][Full Text] [Related]
10. Intermediates of peroxisomal beta-oxidation of [U-14C]hexadecanedionoate. A study of the acyl-CoA esters which accumulate during peroxisomal beta-oxidation of [U-14C]hexadecanedionate and [U-14C]hexadecanedionoyl-mono-CoA. Pourfarzam M; Bartlett K Eur J Biochem; 1992 Sep; 208(2):301-7. PubMed ID: 1521528 [TBL] [Abstract][Full Text] [Related]
11. Peroxisomal beta-oxidation of long-chain fatty acids possessing different extents of unsaturation. Hovik R; Osmundsen H Biochem J; 1987 Nov; 247(3):531-5. PubMed ID: 3426550 [TBL] [Abstract][Full Text] [Related]
12. Kinetic advantage of the interaction between the fatty acid beta-oxidation enzymes and the complexes of the respiratory chain. Sumegi B; Porpaczy Z; Alkonyi I Biochim Biophys Acta; 1991 Jan; 1081(2):121-8. PubMed ID: 1998730 [TBL] [Abstract][Full Text] [Related]
13. Intermediates of peroxisomal beta-oxidation. A study of the fatty acyl-CoA esters which accumulate during peroxisomal beta-oxidation of [U-14C]hexadecanoate. Bartlett K; Hovik R; Eaton S; Watmough NJ; Osmundsen H Biochem J; 1990 Aug; 270(1):175-80. PubMed ID: 2396977 [TBL] [Abstract][Full Text] [Related]
14. Long-chain acyl-CoA profiles in cultured fibroblasts from patients with defects in fatty acid oxidation. Tamvakopoulos CS; Willi S; Anderson VE; Hale DE Biochem Mol Med; 1995 Jun; 55(1):15-21. PubMed ID: 7551821 [TBL] [Abstract][Full Text] [Related]
15. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects. Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial beta-oxidation of 2-methyl fatty acids in rat liver. Mao LF; Chu C; Luo MJ; Simon A; Abbas AS; Schulz H Arch Biochem Biophys; 1995 Aug; 321(1):221-8. PubMed ID: 7639525 [TBL] [Abstract][Full Text] [Related]
17. Detection of acyl-coenzyme A thioester intermediates of fatty acid beta-oxidation as the N-acylglycines by negative-ion chemical ionization gas chromatography-mass spectrometry. Tamvakopoulos CS; Anderson VE Anal Biochem; 1992 Feb; 200(2):381-7. PubMed ID: 1632504 [TBL] [Abstract][Full Text] [Related]
18. Significance of catalase in peroxisomal fatty acyl-CoA beta-oxidation: NADH oxidation by acetoacetyl-CoA and H2O2. Hashimoto F; Hayashi H J Biochem; 1990 Sep; 108(3):426-31. PubMed ID: 2277034 [TBL] [Abstract][Full Text] [Related]
19. [alpha-Oxidation of 3-methyl-branched fatty acids: unraveling of a pathway]. Casteels M Verh K Acad Geneeskd Belg; 2006; 68(3):199-221; discussion 221-2. PubMed ID: 16796018 [TBL] [Abstract][Full Text] [Related]
20. Accumulation of medium chain acyl-CoAs during beta-oxidation of long chain fatty acid by isolated peroxisomes from rat liver. Hashimoto F; Furuya Y; Hayashi H Biol Pharm Bull; 2001 Jun; 24(6):600-6. PubMed ID: 11411544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]